Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Axiomatizability of radical and semisimple classes of modules and Abelian groups

  • 17 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    P. C. Eklof and G. Sabbagh, “Model completions and modules,” Ann. Math. Logic,2, No. 3, 251–295 (1971).

  2. 2.

    P. C. Eklof and G. Sabbagh, “Definiability properties for modules and rings,” J. Symb. Logic,36, 629–649 (1971).

  3. 3.

    G. Sabbagh, “Aspects logiques de la purete dans les modules,” C. R. Acad. Sci. A,271, 909–912 (1969).

  4. 4.

    N. Ya. Komarnitskii, “Torsions and quasivarieties of modules,” in: Questions of the Qualitative Theory of Differential Equations and Their Applications [in Russian], Kiev (1978), pp. 19–21.

  5. 5.

    M. Y. Prest, “Some model-theoretic aspects of torsion theories,” J. Pure Appl. Algebra,12, No. 3, 295–310 (1978).

  6. 6.

    N. Ya. Komarnitskii, “On the axiomatizability of some classes of modules connected with torsions,” in: Algebras and Modules [in Russian], Kishinev (1980), pp. 35–48.

  7. 7.

    C. U. Jensen and P. Vamos, “On the axiomatizability of certain classes of modules,” Math. Z., 167, No. 3, 227–237 (1979).

  8. 8.

    A. P. Mishina and L. A. Skornyakov, Abelian Groups and Modules [in Russian], Nauka, Moscow (1969).

  9. 9.

    B. Stenström, Rings and Modules of Quotients, Springer-Verlag, Berlin-New York (1975).

  10. 10.

    A. I. Mal'tsev, Algebraic Systems, Springer-Verlag, Berlin-Heidelberg-New York (1973).

  11. 11.

    C. C. Chang and H. J. Keisler, Model Theory, North-Holland/Elsevier, Amsterdam-London-New York (1973).

  12. 12.

    W. Szmielew, “Elementary properties of Abelian groups,” Fund. Math.,41, 203–271 (1955).

  13. 13.

    E. L. Gorbachuk and N. Ya. Komarnitskii, “I-radicals and their properties,” Ukr. Mat. Zh.,30, No. 2, 212–217 (1978).

  14. 14.

    V. Dlab, “A characterization of perfect rings,” Pac. J. Math.,33, No. 1, 79–88 (1970).

  15. 15.

    N. Ya. Komarnitskii, “Duo-rings over which all torsions are S-torsions,” Mat. Issled.,48, 65–68 (1978).

Download references

Author information

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 34, No. 2, pp. 151–157, March–April, 1982.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorbachuk, E.L., Komarnitskii, N.Y. Axiomatizability of radical and semisimple classes of modules and Abelian groups. Ukr Math J 34, 124–129 (1982). https://doi.org/10.1007/BF01091514

Download citation


  • Abelian Group
  • Semisimple Class