Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Higher approximations in the transonic expansion of the solution of the chaplygin equation

  • 20 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    F. I. Frankl', “Theory of Laval nozzles,” Izv. Akad. Nauk SSSR, Ser. Mat.,9, 387 (1945).

  2. 2.

    S. V. Fal'kovich, “On a class of Laval nozzles,” Prikl. Mat. Mekh.,11, 223 (1947).

  3. 3.

    L. V. Ovsyannikov, “The Tricomi problem in a class of generalized solutions of the Euler-Darboux equation,” Dokl. Akad. Nauk SSSR,91, 457 (1953).

  4. 4.

    Yu. B. Lifshits and O. S. Ryzhov, “On the asymptotic type of plane-parallel flow in the neighborhood of the center of a Laval nozzle,” Dokl. Akad. Nauk SSSR,154, 290 (1964).

  5. 5.

    O. S. Ryzhov, Investigation of Transonic Flows in Laval Nozzles [in Russian], Izd. VTs AN SSSR, Moscow (1965).

  6. 6.

    K. G. Guderley, The Theory of Transonic Flow, Oxford (1962).

  7. 7.

    S. V. Fal'kovich, “Transonic two-dimensional gas flows with singular points on the sonic line,” Prikl. Mat. Mekh.,25, 218 (1961).

  8. 8.

    V. B. Gorskii, “Shockless gas flow in a Laval nozzle,” in: Transonic Gas Flow [in Russian], Izd. Saratovsk. Un., Saratov (1964), pp. 22–62.

Download references

Author information

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 169–171, July–August, 1984.

I thank L. I. Konstantinov for a helpful discussion.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chernov, I.A. Higher approximations in the transonic expansion of the solution of the chaplygin equation. Fluid Dyn 19, 665–667 (1984). https://doi.org/10.1007/BF01091097

Download citation


  • High Approximation
  • Chaplygin Equation