Fluid Dynamics

, Volume 19, Issue 4, pp 661–664 | Cite as

Equation for weakly non-one-dimensional waves in a liquid of finite depth. Soliton stability

  • M. S. Ruderman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. I. Joseph, “Solitary waves in a finite depth fluid,” J. Phys. A,10, L225 (1977).Google Scholar
  2. 2.
    T. Kubota, D. R. S. Ko, and L. D. Dobbs, “Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth,” J. Hydronaut.,12, 157 (1978).Google Scholar
  3. 3.
    D. J. Korteweg and G. de Vries, “On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves,” Philos. Mag. Ser. (5),39, 422 (1895).Google Scholar
  4. 4.
    H. Ono, “Algebraic solitary waves in stratified fluids,” J. Phys. Soc. Jpn.,39, 1082 (1975).Google Scholar
  5. 5.
    H. Segur and J. L. Hammack, “Soliton models of long internal waves,” J. Fluid Mech.,118, 285 (1982).Google Scholar
  6. 6.
    B. B. Kadomtsev and V. I. Petviashvili, “Stability of solitons in weakly dispersing media,” Dokl. Akad. Nauk SSSR,192, 753 (1970).Google Scholar
  7. 7.
    M. J. Ablowitz and H. Segur, “Long internal waves in fluids of great depth,” Stud. Appl. Math.,62, 249 (1980).Google Scholar
  8. 8.
    V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971).Google Scholar
  9. 9.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. S. Ruderman
    • 1
  1. 1.Moscow

Personalised recommendations