Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the experimental data and applied models of turbulent heat transfer in near-wall flows


The data on the vector of the one-point correlation 〈u i t〉 characterizing turbulent heat transfer are considered using the Reynolds approach to the turbulence description. The turbulent heat transfer from a given heat source (sink) is determined by the dynamic turbulence structure. With this taken into consideration, only the problem statements and obtained results are discussed in which both the thermal and dynamic characteristics of the liquid flow are discussed simultaneously using a unified approach.

This is a preview of subscription content, log in to check access.


  1. 1.

    J. Blom and D. A. Vries, in: Heat and Mass Transfer, Vol. 1 (1968), pp. 147–154.

  2. 2.

    A. J. Reynolds, Int. J. Heat Mass Transfer,18, 1055–1069 (1975).

  3. 3.

    M. M. Gibson, in: Proc. Int. Seminar after Z. Zaric, Dubrovnik (1988).

  4. 4.

    I. P. Ginzburg, Resistance and Heat Transfer Theory [in Russian], Leningrad (1970).

  5. 5.

    A. Malhotra and S. S. Kang, Int. J. Heat Mass Transfer,27, 2158 (1984).

  6. 6.

    N. K. Myong, N. Kasagi, and M. Hirata, JSME, Ser. 2,32, No. 4, 613–621 (1989).

  7. 7.

    M. Jischa and H. B. Rieke, Int. J. Heat Mass Transfer,22, 1547 (1979).

  8. 8.

    A. Pyadishyus and A. Shlanchyauskas, Turbulent Heat Transfer in Near-Wall Layers [in Russian], Vilnius (1987).

  9. 9.

    M. Hishida, Y. Nagano, and M. Tagawa, in: Proc. 8th Int. Heat Transfer Conference (1986), Vol. 3, pp. 925–930.

  10. 10.

    W. M. Kays and M. E. Grawford, Convective Heat and Mass Transfer, McGraw-Hill (1980).

  11. 11.

    E. P. Dyban and E. Ya. Epik, Heat Mass Transfer and Hydrodynamics of Turbulized Flows [in Russian], Kiev (1985).

  12. 12.

    M. Elena and R. Dumas, in: Proc. 6th Int. Heat Transfer Conference, Toronto, FC(b)-11 (1978), Vol. 5, pp. 239–244.

  13. 13.

    L. Fulachier and R. Dumas, ibid. in: Proc. 6th Int. Heat Transfer Conference, Toronto, FC(b)-10, 233–238.

  14. 14.

    P. S. Roganov, V. P. Zabolotskii, E. V. Shishov, and A. I. Leontiev, Int. J. Heat Mass Transfer,27, No. 8, 1251–1259 (1984).

  15. 15.

    A. F. Polyakov (ed.), Turbulent Heat Transfer Involving Mixed Convection in Vertical Tubes [in Russian], Moscow (1989).

  16. 16.

    B. S. Petukhov and A. F. Polyakov, Heat Transfer Involving Mixed Turbulent Convection [in Russian], Moscow (1986).

  17. 17.

    B. S. Petukhov, A. F. Polyakov, and Yu. V. Tsypulev, in: Turbulent Shear Flows (1983), Vol. 2, pp. 166–177.

  18. 18.

    H. Maekawa, V. Kawada, M. Kobayashi, and H. Yamaguchi, Int. J. Heat Mass Transfer,34, No. 8, 1991–1998 (1991).

  19. 19.

    D. E. Wroblewski and P. A. Eibeck, Int. J. Heat Mass Transfer,34, No. 7, 1617–1631 (1991).

  20. 20.

    D. K. Bisset, R. A. Antonia, and M. R. Raupach, Physics of Fluids A, Fluid Dynamics,3, No. 9, 2220–2228 (1991).

  21. 21.

    N. Bagheri, C. J. Strataridakis, and B. R. Write, AIAA J., No. 1, 35–42 (1992).

Download references

Additional information

Institute of High Temperatures, Russian Academy of Sciences, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 64, No. 6, pp. 689–697, June, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polyakov, A.F. On the experimental data and applied models of turbulent heat transfer in near-wall flows. J Eng Phys Thermophys 64, 552–559 (1993).

Download citation


  • Experimental Data
  • Heat Transfer
  • Statistical Physic
  • Heat Source
  • Dynamic Characteristic