Plant Systematics and Evolution

, Volume 221, Issue 3–4, pp 179–198 | Cite as

Phylogenetic signal common to three data sets: Combining data which initially appear heterogeneous

  • J. F. Smith


This study makes use of three sources of data, morphology and two chloroplast DNA sequences,ndhF andrbcL, to resolve relationships in Gesneriaceae. Cladograms from each of the three data sets separately are not topologically congruent. Statistical indices suggest that each data set is congruent with thendhF data althoughrbcL and morphology are themselves incongruent. Consensus methods provide no resolution of taxonomic relationships when trees from the different data sets are combined. Combining data sets generally results in cladograms that are more fully resolved than each of the data sets analyzed separately and support for the clades increases based on higher decay index and bootstrap values. These results indicate that there is a phylogenetic signal common to each of the data sets, however, the noise (errors due to homoplasy, mis-scoring, etc.) unique to each data source masks this signal. In combining the data, the evidence for the common evolutionary history in each data set overcomes the noise and is apparent in the resulting trees.

Key words

Gesneriaceae congruence morphology ndhrbcphylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams E. N. (1972) Consensus techniques and the comparison of taxonomic trees. Syst. Zool. 21: 390–397.Google Scholar
  2. The Angiosperm Phylogeny Group. (1998) An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553.Google Scholar
  3. Ballard J. W. O., Thayer M. K., Newton Jr. A. F., Grismer E. R. (1998) Data sets, partitions, and characters: philosophies and procedures for analyzing multiple data sets. Syst. Biol. 47: 367–396.Google Scholar
  4. Barrett M., Donoghue M. J., Sober E. (1991) Against consensus. Syst. Zool. 40: 486–493.Google Scholar
  5. Bentham G. (1876) Gesneriaceae. In: Hooker J. D. (ed.). Genera Plantarum, G. Bentham, pp. 990–1025.Google Scholar
  6. Boggan J. K. (1991) A morphological study and cladistic analysis ofSinningia and associated genera with particular reference toLembocarpus, Lietzia, Paliavana, andVanhouttea (Gesneriaceae: Gloxinieae) M. S. thesis, Cornell University, Ithaca, NY.Google Scholar
  7. Bremer B. (1996) Combined and separate analysis of morphological and molecular data in the plant family Rubiaceae. Cladistics 12: 21–40.Google Scholar
  8. Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.Google Scholar
  9. Bremer K. (1990) Compatible component consensus. Cladistics 6: 369–372.Google Scholar
  10. Bremer K. (1994) Branch support and tree stability. Cladistics 10: 295–304.Google Scholar
  11. Brower A. V. Z., DeSalle R., Vogler A. (1996) Gene trees, species trees, and systematics: A cladistic perspective. Annu. Rev. Ecol. Syst. 27: 423–450.Google Scholar
  12. Bull J. J., Huelsenbeck J. P., Cunningham C. W., Swofford D. L., Waddell P. J. (1993) Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384–397.Google Scholar
  13. Burtt B. L. (1962) Studies in the Gesneriaceae of the Old World XXIV: Tentative keys to the tribes and genera. Notes Roy. Bot. Gard., Edinburgh 24: 205–220.Google Scholar
  14. Burtt B. L. (1977) Classification above the genus, as exemplified by Gesneriaceae, with parallels from other groups. Plant Syst. Evol., Suppl. 1: 97–109.Google Scholar
  15. Burtt B. L., Wiehler H. (1995) Classification of the family Gesneriaceae. Gesneriana 1: 1–4.Google Scholar
  16. Chase M. W., Soltis D. E., Olmstead R. G., Morgan D., Les D. H., Mishler B. D., Duvall M. R., Price R. A., Hills H. G., Qiu Y-L., Kron K. A., Rettig J. H., Conti E., Palmer J. D., Manhart J. R., Sytsma K. J., Michaels H. J., Kress W. J., Karol K. G., Clark W. D., Hedren M. B., Gaut S., Jansen R. K., Kim K.-J., Wimpee C. F., Smith J. F., Furnier G. R., Strauss S. H., Xiang Q-Y., Plunkett G. M., Soltis P. S., Williams S. E., Gadek P. A., Quinn C. J., Eguiarte L. E., Golenberg E., Learn G. H., Graham S. W., Barrett S. C. H., Dayanandan S., Albert V. A. (1993) Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard. 80: 528–580.Google Scholar
  17. Chase M. W., Cox A. V., Soltis D. E., Soltis P. S., Mort M. E., Savolainen V., Reeves G., Hoot S. B., Morton C. M. (1997) Large DNA sequence matrices, phylogenetic signal, and feasibility: an empirical approach. Amer. J. Bot. 84: 181.Google Scholar
  18. Crisci J. V., Cigliano M. M., Morrone J. J., Roig-Juent S. (1991) Historical biogeography of southern South America. Syst. Zool. 40: 152–171.Google Scholar
  19. Cronquist A. (1981) An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  20. Day W. H. E., Estabrook G. F., McMorris F. R. (1998) Measuring the phylogenetic randomness of biological data sets. Syst. Biol. 47: 604–616.Google Scholar
  21. Donoghue M. J. (1994) Progress and prospects in reconstructing plant phylogeny. Ann. Missouri Bot. Gard. 81: 405–418.Google Scholar
  22. Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.Google Scholar
  23. Doyle J. J. (1992) Gene trees and species trees: molecular systematics as one-character taxonomy. Syst. Bot. 17: 144–163.Google Scholar
  24. Eernisse D. J., Kluge A. J. (1993) Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Mol. Biol. Evol. 10: 1170–1195.Google Scholar
  25. Faith D. P. (1991) Cladistic permutation tests for monophyly and nonmonophyly. Syst. Zool. 40: 366–375.Google Scholar
  26. Farris S. J. (1970) Methods for computing Wagner trees. Syst. Zool. 19: 83–92.Google Scholar
  27. Farris S. J., Kluge A. G., Eckardt M. J. (1970) A numerical approach to phylogenetic systematics. Syst. Zool. 19: 172–191.Google Scholar
  28. Farris S. J., Källersjö M., Kluge A. G., Bult C. (1994a) Permutations. Cladistics 10: 65–76.Google Scholar
  29. Farris S. J., Källersjö M., Kluge A. G., Bult C. (1994b) Testing significance of incongruence. Cladistics 10: 315–319.Google Scholar
  30. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  31. Fritsch K. (1893–1894) Gesneriaceae. In: A. Engler & K. Prantl, Die Natürlichen Pflanzenfamilien Vol. 4(3b). Leipzig: Wilhelm Engelmann, pp. 133–185.Google Scholar
  32. Givnish T. J., Sytsma K. J. (1997a) Homoplasy in molecular vs. morphological data: the likelihood of correct phylogenetic inference. In: Givnish T. J., Sytsma K. J. (eds.) Molecular Evolution and Adaptive Radiation. Cambridge University Press, New York, pp. 55–101.Google Scholar
  33. Givnish T. J., Sytsma K. J. (1997b) Consistency, characters, and the likelihood of correct phylogenetic inference. Mol. Phyl. Evol. 7: 320–330.Google Scholar
  34. Graham S. W., Kohn J. R., Morton B. R., Eckenwalder J. E., Barrett S. C. H. (1998) Phylogenetic congruence and discordance among one morphological and three molecular data sets from Pontederiaceae. Syst. Biol. 47: 545–567.Google Scholar
  35. Heywood V. H. (1978) Flowering Plants of the World. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  36. Hillis D. M., Huelsenbeck J. P. (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J. Heredity 83: 189–195.Google Scholar
  37. Huelsenbeck J. P., Hillis D. M. (1993) Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42: 247–264.Google Scholar
  38. Huelsenbeck J. P., Bull J. J., Cunningham C. W. (1996) Combining data in phylogenetic analysis. Trends Ecol. Evol. 11: 152–158.Google Scholar
  39. Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. D. (1988) DNA sequencing and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl. Acad. Sci., USA 85: 9436–9440.Google Scholar
  40. Ivanina L. I. (1965) Application of the carpological method to the taxonomy of Gesneriaceae. Notes Roy. Bot. Gard., Edinburgh 26: 383–402.Google Scholar
  41. Johnson L. A., Soltis D. E. (1998) Assessing congruence: empirical examples from molecular data. In: Soltis D. E., Soltis P. S., Doyle J. J. (eds.) Molecular Systematics of Plants II DNA Sequencing. Kluwer Academic Publishers, Norwell Massachusetts, pp. 297–328.Google Scholar
  42. Källersjö M., Farris J. S., Kluge A. G., Bult C. (1992) Skewness and permutation. Cladistics 8: 275–287.Google Scholar
  43. Kim K.-J., Jansen R. K. (1994) Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia, Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst. Evol. 190: 157–185.Google Scholar
  44. Kluge A. G. (1989) A concern for evidence and a phylogenetic hypothesis of relationships amongEpicrates (Boidae, Serpentes). Syst. Zool. 38: 7–25.Google Scholar
  45. Kress W. J. (1986) The systematic distribution of vascular epiphytes: an update. Selbyana 9: 2–22.Google Scholar
  46. Kvist L. P. (1990) Revision ofHeppiella (Gesneriaceae). Syst. Bot. 15: 720–735.Google Scholar
  47. Lavin M. (1993) Biogeography and systematics ofPoitea (Leguminosae). Syst. Bot. Monogr. 37: 1–87.Google Scholar
  48. Lutzoni F. M. (1997) Phylogeny of lichen- and nonlichen-forming Omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Syst. Biol. 46: 373–406.Google Scholar
  49. Madison M. (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2: 1–13.Google Scholar
  50. Maddison D. R. (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst. Zool. 40: 315–328.Google Scholar
  51. Mason-Gamer R. J., Kellogg E. A. (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae. Syst. Biol. 45: 524–545.Google Scholar
  52. Miyamoto M. M. (1981) Congruence among character sets in phylogenetic studies of the frog genusLeptodactylus. Syst. Zool. 30: 281–290.Google Scholar
  53. Miyamoto M. M., Fitch W. M. (1995) Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol. 44: 64–76.Google Scholar
  54. Möller M., Cronk Q. C. B. (1997) Origin and relationships ofSaintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Amer. J. Bot. 84: 956–965.Google Scholar
  55. Munro S. L., Linder H. P. (1998) The phylogenetic position ofPrionium (Juncaceae) within the order Juncales based on morphological andrbcL sequence data. Syst. Bot. 23: 43–56.Google Scholar
  56. Neigel J. E., Avise J. C. (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin S., Nevo E. (eds.) Evolutionary processes and theory. Academic Press, New York, pp. 515–534.Google Scholar
  57. Nelson G. (1979) Cladistic analysis and synthesis: principles and definitions with a historical note on Adanson's Famille des Plantes (1763–1764). Syst. Zool. 28: 1–21.Google Scholar
  58. Olmstead R. G., Palmer J. D. (1994) Chloroplast DNA systematics: A review of methods and data analysis. Amer. J. Bot. 81: 1205–1224.Google Scholar
  59. Olmstead R. G., Sweere J. A. (1994) Combining data in phylogenetic systematics: An empirical approach using three molecular data sets in the Solanaceae. Syst. Biol. 43: 467–481.Google Scholar
  60. Olmstead R. G., Reeves P. A. (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplastrbcL andndhF sequences. Ann. Missouri Bot. Gard. 82: 176–193.Google Scholar
  61. Olmstead R. G., Bremer B., Scott K. M., Palmer J. D. (1993) A parsimony analysis of the Asteridae Sensu Lato based onrbcL sequences. Ann. Missouri Bot. Gard. 80: 700–722.Google Scholar
  62. Olmstead R. G., Michaels H. J., Scott K. M., Palmer J. D. (1992) Asteridae monophyly and major lineages of Asteridae inferred fromrbcL sequences. Ann. Missouri Bot. Gard. 79: 249–265.Google Scholar
  63. Pennington R. T. (1996) Molecular and morphological data provide phylogenetic resolution at different hierarchical levels inAndira. Syst. Biol. 45: 496–515.Google Scholar
  64. Poe S. (1996) Data set incongruence and the phylogeny of Crocodilians. Syst. Biol. 45: 393–414.Google Scholar
  65. Rieseberg L. H., Brunsfeld S. J. (1992) Molecular evidence and plant introgression. In: Soltis P. S., Soltis D. E., Doyle J. J. (eds.) Molecular systematics of plants. Chapman and Hall New York, pp. 151–176.Google Scholar
  66. Rodman J. E., Soltis P. S., Soltis D. E., Sytsma K. J., Karol K. G. (1998) Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Amer. J. Bot. 85: 997–1006.Google Scholar
  67. Rodrigo A. G., Kelly-Borges M., Bergquist P. R., Bergquist P. L. (1993) A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree. N. Z. J. Bot. 31: 257–268.Google Scholar
  68. Sanderson M. J. (1989) Confidence limits in phylogenies: the bootstrap revisited. Cladistics 5: 113–129.Google Scholar
  69. Sanderson M. J., Donoghue M. J. (1989) Patterns of variation in levels of homoplasy. Evolution 43: 1781–1795.Google Scholar
  70. Sanderson M. J., Donoghue M. J. (1996) The relationship between homoplasy and confidence in a phylogenetic tree. In: Sanderson M. J., Hufford L. (eds.) Homoplasy: The recurrence of similarity in evolution. Academic Press, San Diego, pp. 67–90.Google Scholar
  71. Seelanen T., Schnabel A., Wendel J. F. (1997) Congruence and consensus in the cotton tribe (Malvaceae) Syst. Bot. 22: 259–290.Google Scholar
  72. Smith J. F. (1996) Tribal relationships within the Gesneriaceae: A cladistic analysis of morphological data. Syst. Bot. 21: 497–514.Google Scholar
  73. Smith J. F., Sytsma K. J. (1994a) Evolution in the Andean epiphytic genusColumnea (Gesneriaceae): Part I. morphological variation. Syst. Bot. 19: 220–235.Google Scholar
  74. Smith J. F., Sytsma K. J. (1994b) Evolution in the Andean epiphytic genusColumnea (Gesneriaceae): Part II. chloroplast DNA restriction site variation. Syst. Bot. 19: 317–336.Google Scholar
  75. Smith J. F., Sytsma K. J. (1994c) Molecules and morphology: congruence of data inColumnea (Gesneriaceae). Plant Syst. Evol. 194: 37–52.Google Scholar
  76. Smith J. F., Carroll C. L. (1997) Phylogenetic relationships of theEpiscieae (Gesneriaceae) based onndhF sequences. Syst. Bot. 22: 713–724.Google Scholar
  77. Smith J. F., Atkinson S. (1998) Phylogenetic analysis of the tribes Gloxinieae and Gesnerieae (Gesneriaceae): Data fromndhF Sequences. Selbyana 19: 122–131.Google Scholar
  78. Smith J. F., Sytsma K. J., Shoemaker J. S., Smith R. L. (1992) A qualitative comparison of total cellular DNA extraction protocols. Phytochem. Bull. Bot. Soc. Amer. 23: 2–9.Google Scholar
  79. Smith J. F., Kress W. J., Zimmer E. A. (1993) Phylogenetic analysis of the Zingiberales based onrbcL sequences. Ann. Missouri Bot. Gard. 80: 620–630.Google Scholar
  80. Smith J. F., Wolfram J. C., Brown K. D., Carroll C. L., Denton D. S. (1997a) Tribal relationships in the Gesneriaceae: Evidence from DNA sequences of the chloroplast genendhF. Ann. Missouri Bot. Gard. 84: 50–66.Google Scholar
  81. Smith J. F., Brown K. D., Carroll C. L., Denton D. S. (1997b) Familial placement ofCyrtandromoea, Titanotrichum, andSanango: Three problematic genera of the Lamiales. Taxon 46: 65–74.Google Scholar
  82. Smith J. F., Kresge M., Möller M., Cronk Q. C. B. (1998) The African violets (Saintpaulia) are members ofStreptocarpus subgenusStreptocarpella (Gesneriaceae): Combined evidence from chloroplast and nuclear ribosomal genes. Edin. J. Bot. 55: 1–11.Google Scholar
  83. Soltis D. E., Soltis P. S., Collier T. G., Edgerton M. L. (1991) Chloroplast DNA variation within and among genera of theHeuchera group (Saxifragaceae); Evidence for chloroplast transfer and paraphyly. Amer. J. Bot. 78: 1091–1112.Google Scholar
  84. Soltis D. E., Soltis P. S., Chase M. W., Mort M. E., Savolainen V., Hoot S., Morton C. M. (1997) Inferring complex phylogenies: an empirical approach using three large DNA data sets for angiosperms. Amer. J. Bot. 84: 232.Google Scholar
  85. Soltis D. E., Soltis P. S., Mort M. E., Chase M. W., Savolainen V., Hoot S. B., Morton C. M. (1998) Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst. Biol. 47: 32–42.Google Scholar
  86. Steele K. P., Vilgalys R. (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid genematK. Syst. Bot. 19: 126–142.Google Scholar
  87. Swofford D. L. (1991) When are phylogeny estimates from molecular and morphological data incongruent? In: Miyamoto M. M., Cracraft J. (eds.) Phylogenetic analysis of DNA sequences. Oxford University Press, New York, pp. 295–333.Google Scholar
  88. Swofford D. L. (1993) PAUP: Phylogenetic analysis using parsimony, version 3.1.1 Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois.Google Scholar
  89. Swofford D. L., Maddison W. P. (1987) Reconstructing ancestral character states under Wagner parsimony. Math. Biosci. 87: 199–229.Google Scholar
  90. Sytsma K. J. (1990) DNA and morphology: inference of plant phylogeny. Trends Ecol. Evol. 5: 104–110.Google Scholar
  91. Wendel J. F., Doyle J. J. (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis D. E., Soltis P. S., Doyle J. J. (eds.) Molecular Systematics of Plants II DNA Sequencing. Kluwer Academic Publishers, Norwell Massachusetts, pp. 265–296.Google Scholar
  92. Wiehler H. (1983) A synopsis of the neotropical Gesneriaceae. Selbyana 6: 1–249.Google Scholar
  93. Wiens J. J. (1998) Combining data sets with different phylogenetic histories. Syst. Biol. 47: 568–581.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • J. F. Smith
    • 1
  1. 1.Biology DepartmentBoise State UniversityBoiseUSA

Personalised recommendations