Plant Systematics and Evolution

, Volume 221, Issue 3–4, pp 157–166 | Cite as

Phylogeny of the Madagascan endemic family Didiereaceae

  • W. L. Applequist
  • R. S. Wallace
Article

Abstract

A molecular phylogeny of the Didiereaceae was produced through parsimony analysis of chloroplastrpl16 intron andtrnL-trnF andtrnT-trnL intergenic spacer sequences of all eleven species of the Didiereaceae and several outgroup taxa from the Portulacaceae. Results indicated that: 1) the Didiereaceae were embedded within the Portulacaceae, withCalyptrotheca as the sister group of the family; 2) present generic limits were supported; 3)Alluaudiopsis was the most basal lineage; 4) at least two separate episodes of polyploidization within the genusAlluaudia had occurred, and 5) unusually low amounts of variation were present in rapidly evolving noncoding plastid sequences.

Key words

Calyptrotheca Didiereaceae Portulacaceae Chloroplast DNA phylogeny rpl16 systematics trnL-trntrnT-trn

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behnke H.-D. (1969) Über Siebröhren-Plastiden und Plastidenfilamente der Caryophyllales. Untersuchungen zum Feinbau und zur Verbreitung eines weiteren spezifischen Plastidentyps. Planta 89: 275–283.Google Scholar
  2. Behnke H.-D. (1976) Ultrastructure of sieve-element plastids in Caryophyllales (Centrospermae), evidence for the delimitation and classification of the order. Plant Syst. Evol. 126: 31–54.Google Scholar
  3. Behnke H.-D. (1978) Elektronenoptische Untersuchungen am Phloem sukkulenter Centrospermen (incl. Didiereaceen). Bot. Jahrb. Syst. 99: 341–352.Google Scholar
  4. Behnke H.-D., Mabry T. J., Eifert I. J., Pop L. (1975) P-type sieve element plastids and betalains in Portulacaceae (includingCeraria, Portulacaria, Talinella). Can. J. Bot. 53: 2103–2109.Google Scholar
  5. Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.Google Scholar
  6. Donoghue M. J., Olmstead R. G., Smith F. J., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.Google Scholar
  7. Downie S. R., Palmer J. D. (1994) A chloroplast DNA phylogeny of the Caryophyllales based on structural and inverted repeat restriction site variation. Syst. Bot. 19: 236–252.Google Scholar
  8. Downie S. R., Palmer J. D., Katz-Downie D. S., Cho K.-J. (1997) Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNAORF2280 homolog sequences. Amer. J. Bot. 84: 253–273.Google Scholar
  9. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  10. Hershkovitz M. A. (1993) Revised circumscriptions and subgeneric taxonomies ofCalandrinia andMontiopsis (Portulacaceae) with notes on phylogeny of the portulacaceous alliance. Ann. Missouri Bot. Gard. 80: 333–365.Google Scholar
  11. Hershkovitz M. A., Zimmer E. A. (1997) On the evolutionary origins of the cacti. Taxon 46: 217–232.Google Scholar
  12. Jensen U. (1965) Serologische Untersuchungen zur Frage der systematischen Einordnung der Didiereaceae. Bot. Jahrb. 84: 233–253.Google Scholar
  13. Jordan W. C., Courtney M. W., Neigel J. E. (1996) Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). Amer. J. Bot. 83: 430–439.Google Scholar
  14. Kelchner S. A., Clark L. G. (1997) Molecular evolution and phylogenetic utility of the chloroplastrpl16 intron inChusquea and the Bambusoideae (Poaceae). Mol. Phyl. Evol. 8: 385–397.Google Scholar
  15. Kelchner S. A., Wendel J. F. (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr. Genet. 30: 259–262.Google Scholar
  16. Kubitzki K. (1993) Didiereaceae. In: Kubitzki K., Rohwer J. G., Bittrich V. (eds.) The families and genera of flowering plants. Springer, Berlin, pp. 292–295.Google Scholar
  17. Nyananyo B. L. (1986) The systematic position of the genusCalyptrotheca Gilg (Portulacaceae). Feddes Repert. 97: 767–769.Google Scholar
  18. Nowicke J. W. (1975) Pollen morphology in the order Centrospermae. Grana 15: 51–77.Google Scholar
  19. Rabesa Z. A. (1982a) Definition de deux sections du genreAlluaudia (Didiereaceae). Taxon 31: 736–737.Google Scholar
  20. Rabesa Z. A. (1982b) Recherches chimiosystématiques sur les flavonoides des Didiéréacées. Trop. u. Subtr. Pflanz. 37: 339–358.Google Scholar
  21. Rauh W., Dittmar K. (1970) Weitere Untersuchungen an Didiereaceen. 3. Teil. Vergleichend anatomische Untersuchungen an den Sprossachsen und den Dornen der Didiereaceen. Sitz. Heidelb. Akad. Wiss. 1969/70 (4): 163–246.Google Scholar
  22. Rauh W., Reznik H. (1961) Zur Frage der systematischen Stellung der Didiereaceen. Bot. Jahrb. 81: 94–105.Google Scholar
  23. Rauh W., Schölch H. F. (1965) Weitere Untersuchungen an Didiereaceen. 2. Teil. Inflorescenz-, blüetenmorphologische und embryologische Untersuchungen mit Ausblick auf die systematische Stellung der Didiereaceen. Sitz. Heidelb. Akad. Wiss. 1965(3): 221–434.Google Scholar
  24. Raven P. H., Axelrod D. L. (1974) Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539–673.Google Scholar
  25. Rettig J. H., Wilson H. D., Manhart J. R. (1992) Phylogeny of the Caryophyllales — gene sequence data. Taxon 41: 201–209.Google Scholar
  26. Rodman J. E., Oliver M. K., Nakamura R. R., McClammer J. U. Jr., Bledsoe A. H. (1984) A taxonomic analysis and revised classification of Centrospermae. Syst. Bot. 9: 297–323.Google Scholar
  27. Rowley G. (1992) Didiereaceae: Cacti of the Old World. Kew: British Cactus and Succulent Society.Google Scholar
  28. Rychlik W. (1992) OLIGO. Plymouth MN: National Biosciences Inc.Google Scholar
  29. Schill R., Rauh W., Wieland H. P. (1974) Die Chromosomenzahlen der einzelnen Arten. Trop. u. Subtrop. Pflanz. 11: 1–14.Google Scholar
  30. Straka H. (1975) Palynologie et différentiation systématique d'une famille endémique de Madagascar: les Didieréacées. Boissiera 24: 245–248.Google Scholar
  31. Swofford D. L. (1993) PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Washington, DC: Smithsonian Institution.Google Scholar
  32. Swofford D. L. (1999) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0.0b2. Sunderland, MA: Sinauer Associates.Google Scholar
  33. Taberlet P., Gielly L., Pautou G., Bouvet J. (1991) Universal primers for amplification of three noncoding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109.Google Scholar
  34. Thorne R. F. (1976) A phylogenetic classification of the angiosperms. Evol. Biol. 9: 35–106.Google Scholar
  35. Thorne R. F. (1978) Plate tectonics and angiosperm distribution. Notes Roy. Bot. Gard. Edinburgh 36: 297–315.Google Scholar
  36. Wallace R. S., Cota J. H. (1996) An intron loss in the choroplast generpoC1 supports a monophyletic origin for the subfamily Cactoideae of the Cactaceae. Curr. Genet. 29: 275–281.Google Scholar
  37. Wu C.-I., Li W.-H. (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82: 1741–1745.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • W. L. Applequist
    • 1
  • R. S. Wallace
    • 1
  1. 1.College of Liberal Arts and Sciences, Department of BotanyIowa State University of Science and TechnologyAmesUSA

Personalised recommendations