Plant Systematics and Evolution

, Volume 218, Issue 3–4, pp 221–243 | Cite as

Epiphytism and terrestrialization in tropicalHuperzia (Lycopodiaceae)

Article

Abstract

A phylogenetic analysis ofHuperzia (Lycopodiaceae) documents a single origin of epiphytism and multiple reversals to a terrestrial habit in the Neotropics. Epiphytism evolved prior to the final rifting of South America and Africa, but the origin of most modern species diversity probably postdates the Mid Cretaceous diversification of flowering plants. In this respect, the evolution ofHuperzia parallels that of many other Neotropical epiphytic groups. In the Andes, alpine terrestrial species are shown to have evolved from montane epiphytes, an event that correlates well with regional orogenesis during the Miocene. Species from Australia, New Zealand, and Tasmania show diverse relationships with SE Asian groups. Results also indicate that long distance, transoceanic dispersal is rare in these homosporous plants — accounting for less than 5% of species distributions — and that convergence in strobilus and branch morphology is widespread among Paleotropical and Neotropical epiphytes. The phylogenetic analysis is based on a sample of 63 species (c. 15% total species diversity) and data from a c. 1.1kb region of noncoding (intron and spacer sequences) plastid DNA located between thetrnL andtrnF genes.

Key words

Lycopodiaceae Huperzia Epiphyte Andes Neotropics plastid DNA trntrn

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker J. G. (1887) Handbook of the fern-allies. Bell, London.Google Scholar
  2. Benzing D. H. (1990) Vascular epiphytes. Cambridge University Press, Cambridge.Google Scholar
  3. Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.Google Scholar
  4. Chu M. C.-Y. (1974) A comparative study of the foliar anatomy ofLycopodium species. Amer. J. Bot. 61: 681–692.Google Scholar
  5. Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. (1992) Phylogenetic relationships ofDipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.Google Scholar
  6. Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.Google Scholar
  7. Eriksson T., Wikström N. (1995) AutoDecay, version 3.0.3. Stockholm University, StockholmGoogle Scholar
  8. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  9. Friis E. M., Pedersen K. R. (1990) Structure of the Lower Cretaceous fernOnychiopsis psilotoides from Bornholm, Denmark. Rev. of Palaeobot. Palynol. 66: 47–63.Google Scholar
  10. Gentry A. H., Dodson C. H. (1987) Diversity and biogeography of Neotropical epiphytes. Ann. Missouri Bot. Gard. 74: 205–233.Google Scholar
  11. Golenberg E. M., Clegg M. T., Durbin M. L., Doebley J., Ma D. P. (1993) Evolution of a noncoding region of the chloroplast genome. Molec. Phylogenet. Evol. 2: 52–64.Google Scholar
  12. Herter W. (1949–50) Systema Lycopodiorum. Revista Sudamer. Bot. 8: 67–86. 1949; 93–116. 1950.Google Scholar
  13. Holub J. (1964)Lycopodiella, novy rod radu Lycopodiales. Preslia 36: 16–22.Google Scholar
  14. Holub J. (1985) Transfer ofLycopodium species toHuperzia with a note on generic classification in Huperziaceae. Folia Geobot. Phytotax. 20: 67–80.Google Scholar
  15. Holub J. (1991) Taxonomic changes within Lycopodiales. Folia Geobot. Phytotax. 26: 81–94.Google Scholar
  16. Ogura Y. (1972) Comparative anatomy of vegetative organs of the pteridophytes. In: Zimmermann W., Carlquist S., Ozenda P., Wulff H. D. (eds.) Handbuch der Pflanzenanatomie. Bornträger, Berlin, Stuttgart, pp. 1–502.Google Scholar
  17. Øllgaard B. (1975) Studies in Lycopodiaceae I. Observations on the structure of the sporangium wall. Amer. Fern J. 65: 19–27.Google Scholar
  18. Øllgaard B. (1987) A revised classification of the Lycopodiaceae s. lat. Opera Bot. 92: 153–178.Google Scholar
  19. Øllgaard B. (1989) Index of the Lycopodiaceae. Biol. Skr. 34: 1–135.Google Scholar
  20. Øllgaard B. (1992) Neotropical Lycopodiaceae — an overview. Ann. Missouri Bot. Gard. 79: 687–717.Google Scholar
  21. Øllgaard B. (1995) Diversity ofHuperzia (Lycopodiaceae) in Neotropical montane forest. In: Churchill S. P., Balslev H., Forero E., Luteyn J. L. (eds.) Biodiversity and conservation of Neotropical montane forest. New York Botanical Garden, New York, pp. 349–358.Google Scholar
  22. Prizel E. (1901) Lycopodiaceae. In: Engler A., Prantl K. (eds.) Die Natürlichen Pflanzenfamilien. Engelmann, Leipzig, pp. 563–606.Google Scholar
  23. Schippers R. R. (1993) Pteridophytes of Tanzania with special reference to Pare and Usambara mountains. Fern Gaz. 14: 171–192.Google Scholar
  24. Skog J. E. (1986) The supposed fernOnychiopsis psilotoides from the English Wealden (Lower Cretaceous) reinterpreted as a lycopod. Canad. J. Bot. 64: 1453–1466.Google Scholar
  25. Skog J. E. (1990) Wathenia, the correct generic name forTanydorus (Lycopodiales) sensu Skog, not as to type. Taxon 39: 306–307.Google Scholar
  26. Skog J. E., Hill C. R. (1992) The Mesozoic herbaceous lycopsids. Ann. Missouri Bot. Gard. 79: 648–675.Google Scholar
  27. Spring A. F. (1842) Monographie de la famille des Lycopodiacées, premiere partie. Mem. Academic. Roy. Sci. Belgique 15: 1–110.Google Scholar
  28. Spring A. F. (1850) Monographie de la famille des Lycopodiacées, seconde partie. Mem. Academie Roy. Sci, Belgique 24: 1–358.Google Scholar
  29. Staden R. (1996) The staden sequence analysis package. Molec. Biotechnol. 5: 233–241.Google Scholar
  30. Stevenson D. W. (1976) Observations on phyllotaxis, stelar morphology, the shoot apex and gemmae ofLycopodium lucidulum Michaux (Lycopodiaceae). Bot. J. Linn. Soc. 72: 81–100.Google Scholar
  31. Taberlet P., Gielly L., Pautou G., Bouvet J. (1991) Universal primers for amplification of three noncoding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109.Google Scholar
  32. Taylor D. W. (1991) Paleobiogeographic relationships of Andean angiosperms of Cretaceous to Plicene age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 88: 69–84.Google Scholar
  33. Taylor D. W. (1995) Cretaceous to Tertiary geologic and angiosperm paleogeographic history of the Andes. In: Churchill S. P., Balslev H., Forero E., Luteyn J. L. (eds.) Biodiversity and conservation of Neotropical montane forest. New York Botanical Garden, New York, pp. 3–9.Google Scholar
  34. Thomas B. A. (1992) Paleozoic herbaceous lycopsids and the beginnings of extantLycopodium sens. lat. andSelaginella sens. lat. Ann. Missouri Bot. Gard. 79: 623–631.Google Scholar
  35. Tryon A. F., Lugardon B. (1991) Spores of the Pteridophyta: surface, wall structure, and diversity based on electron microscope studies. Springer, New York Berlin Heidelberg.Google Scholar
  36. Vendramin G. G., Lelli L., Rossi P., Margante M. (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Molec. Ecol. 5: 595–598.Google Scholar
  37. Wagner F. S. (1992) Cytological problems inLycopodium sens. lat. Ann. Missouri Bot. Gard. 79: 718–729.Google Scholar
  38. Wagner W. H., Beitel M. J. (1992) Generic classification of modern North American Lycopodiaceae. Ann. Missouri Bot. Gard. 79: 676–686.Google Scholar
  39. Wikström N., Kenrick P. (1997) Phylogeny of Lycopodiaceae (Lycopsida) and the relationship ofPhylloglossum drumondii Kunze based onrbcL sequence data. Int. J. Pl. Sci. 158: 862–871.Google Scholar
  40. Wilce J. H. (1972) Lycopod spores, I. General spore patterns and the generic segregates ofLycopodium. Amer. Fern J. 62: 65–79.Google Scholar
  41. Windley B. F. (1995) The evolving continents. Wiley, Chichester.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  1. 1.Department of BotanyStockholm UniversityStockholmSweden
  2. 2.Department of PalaeontologyThe Natural History MuseumLondonUnited Kingdom
  3. 3.Jodrell LaboratoryRichmondUnited Kingdom

Personalised recommendations