Functional Analysis and Its Applications

, Volume 27, Issue 3, pp 222–224 | Cite as

The Landau—Lifshits equation and quadrisecants of Prym varieties

  • I. A. Taimanov
Brief Communications


Functional Analysis Prym Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Mumford, Tata Lectures on Theta, Birkhäuser, Boston—Basel—Stuttgart, Vol. 1 (1983); Vol. 2 (1984).Google Scholar
  2. 2.
    I. A. Taimanov, Mat. Zametki,50, No. 1, 98–107 (1991).Google Scholar
  3. 3.
    E. K. Sklyanin, Preprint LOMI, Leningrad, E-3-79 (1979).Google Scholar
  4. 4.
    M. M. Bogdan and A. S. Kovalev, Pis'ma Zh. Tekh. Fiz.,31, 424–427 (1980).Google Scholar
  5. 5.
    R. Hirota, J. Phys. Soc. Jpn.,51, 323–331 (1982).Google Scholar
  6. 6.
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, J. Phys. A,16, 221–236 (1983).Google Scholar
  7. 7.
    A. I. Bobenko, Funkts. Anal. Prilozhen.,19, No. 1, 6–19 (1985).Google Scholar
  8. 8.
    A. Beauville and O. Debarre, Ann. Scuola Norm. Sup. Pisa,14, 613–623 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • I. A. Taimanov

There are no affiliations available

Personalised recommendations