Functional Analysis and Its Applications

, Volume 27, Issue 3, pp 197–204

Nonhomogeneous quadratic duality and curvature

  • L. E. Positsel'skii
Article
  • 123 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Priddy, “Koszul resolutions,” Trans. Am. Math. Soc.,152, No. 1, 39–60 (1970).Google Scholar
  2. 2.
    A. A. Beilinson, V. A. Ginzburg, and V. V. Schechtman, “Koszul duality,” J. Geom. Phys.,5, No. 3, 317–350 (1988).Google Scholar
  3. 3.
    C. Löfwall, “On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebra,” Lect. Notes Math.,1183, pp. 291–338 (1986).Google Scholar
  4. 4.
    M. M. Kapranov, “On DG-modules over the De Rham complex and the vanishing cycles functor,” Preprint (1990).Google Scholar
  5. 5.
    S.-S. Chern and J. Simons, “Characteristic forms and geometric invariants,” Ann. Math. (2),99, No. 1, 48–69 (1974).Google Scholar
  6. 6.
    A. E. Polishchuk and L. E. Positsel'skii, “Quadratic algebras,” to appear.Google Scholar
  7. 7.
    S. MacLane, Homology, Springer-Verlag, Berlin—New York (1963).Google Scholar
  8. 8.
    J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, New Jersey; University of Tokyo Press, Tokyo (1974).Google Scholar
  9. 9.
    J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York—Amsterdam (1965).Google Scholar
  10. 10.
    F. A. Beresin and V. S. Retakh, “A method of computing characteristic classes of vector bundles,” Rep. Math. Phys.,18, No. 3, 363–378 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • L. E. Positsel'skii

There are no affiliations available

Personalised recommendations