Ukrainian Mathematical Journal

, Volume 24, Issue 2, pp 119–129 | Cite as

The inverse problem of approximating functions on a boundary for compacta of positive capacity

  • V. I. Gorbaichuk
  • P. M. Tamrazov
Article
  • 16 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. A. Lebedev and P. M. Tamrazov, “Inverse approximation theorems on regular compacta of the complex plane,” Izv. Akad. Nauk SSSR, Ser. Matem.,34, No. 6 (1970).Google Scholar
  2. 2.
    V. K. Dzyadyk, “Nikol'skii's problem in the complex plane,” Izv. Akad. Nauk SSSR, Ser. Matem.,23, No. 5 (1959).Google Scholar
  3. 3.
    V. K. Dzyadyk, “Inverse problems in the theory of the approximation of functions in a complex domain,” Ukrainsk. Matem. Zh.,15, No. 4 (1963).Google Scholar
  4. 4.
    N. A. Lebedev, “Inverse uniform approximation theorems,” Dokl. Akad. Nauk SSSR,171, No. 4 (1966).Google Scholar
  5. 5.
    N. A. Lebedev and P. M. Tamrazov, “Inverse approximation theorems in closed sets of the complex plane,” Dokl. Akad. Nauk SSSR,179, No. 5 (1968).Google Scholar
  6. 6.
    M. Tsuji, Potential Theory in Modern Function Theory, Tokyo (1959).Google Scholar
  7. 7.
    M. V. Keldysh, “The solvability and stability of the Dirichlet problem,” Ukrainsk. Matem. Zh., No. 8 (1940).Google Scholar
  8. 8.
    G. M. Goluzin, Geometrical Theory of Functions of a Complex Variable, [in Russian], Nauka, Moscow (1966).Google Scholar
  9. 9.
    N. S. Londkof, The Fundamentals of Modern Potential Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  10. 10.
    M. Brelo, The Fundamentals of Classical Potential Theory [Russian translation], Mir, Moscow (1964).Google Scholar
  11. 11.
    I. G. Petrovskii, Lectures on Partial Differential Equations [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  12. 12.
    R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964).Google Scholar
  13. 13.
    R. Nevanlinna, Single-Valued Analytic Functions [in Russian], GITTL, Moscow-Leningrad (1941).Google Scholar
  14. 14.
    V. I. Gorbaichuk and P. M. Tamrazov, “A closed inverse problem for approximation of functions for closed sets in a hyperplane,” Abstract for the Fifth Conference of Young Ukrainian Mathematicians [in Ukrainian], Izd. Instituta Matematiki Akad. Nauk Ukrainian SSR, Kiev (1970).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • V. I. Gorbaichuk
    • 1
  • P. M. Tamrazov
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations