Functional Analysis and Its Applications

, Volume 5, Issue 4, pp 280–287 | Cite as

Korteweg-de Vries equation: A completely integrable Hamiltonian system

  • V. E. Zakharov
  • L. D. Faddeev
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, "Method for solving the Korteweg-de Vries equation," Phys. Rev. Lett.,19, 1095–1097 (1967).Google Scholar
  2. 2.
    R. M. Miura, C. S. Gardner, and M. D. Kruskal, "Korteweg-de Vries equation and generalizations, II. Existence of conservation laws and constants of motion," J. Math. Phys.,9, No. 8, 1204–1209 (1968).Google Scholar
  3. 3.
    M. D. Kruskal, R. M. Miura, C. S. Gardner, and N. J. Zabusky, "Korteweg-de Vries equation and generalizations, V. Uniqueness and nonexistence of polynomial conservation laws," J. Math. Phys.,11, No. 3, 952–960 (1970).Google Scholar
  4. 4.
    P. D. Lax, "Integrals of nonlinear equations and solitary waves" Comm. Pure Appl. Math.,21, No. 2, 467–490 (1968).Google Scholar
  5. 5.
    L. D. Faddeev, "Properties of the S-matrix of the one-dimensional Schroedinger equation," Trudy Matem. in-ta im. V. A. Steklova,73, 314–336 (1964).Google Scholar
  6. 6.
    J. Kay and H. E. Moses, "The determination of the scattering potential from the spectral measure function, III" Nuovo Cimento,3, No. 2, 277–304 (1956).Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshits, Mechanics, Addison-Wesley, Reading, Mass (1960).Google Scholar
  8. 8.
    V. I. Arnol'd, Lectures on Classical Mechanics [in Russian], Moscow State Univ., Moscow (1968).Google Scholar
  9. 9.
    I. M. Gel'fand and B. M. Levitan, "On a simple identity for the characteristic values of a differential operator of the second order," Dokl. Akad. Nauk SSSR,88, No. 4, 593–596 (1953).Google Scholar
  10. 10.
    I. M. Gel'fand, "On identities for characteristic values of a differentiable operator of the second order," Usp. Mat. Nauk,11, No. 1, 191–198 (1956).Google Scholar
  11. 11.
    V. S. Buslaev and L. D. Faddeev, "On formulas for traces of a Sturm-Liouville singular differential operator," Dokl. Akad. Nauk SSSR, 132, No. 1, 13–16 (1960).Google Scholar
  12. 12.
    V. E. Zakharov, "A kinetic equation for solitons," Zh. Éksp. Teor. Fiz.,60, No. 3, 993–1000 (1971).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • V. E. Zakharov
  • L. D. Faddeev

There are no affiliations available

Personalised recommendations