Advertisement

Journal of Materials Science

, Volume 22, Issue 8, pp 2852–2858 | Cite as

Structure and optical properties of evaporated films of vanadium

  • S. Mahmoud
  • Z. S. El Mandouh
Papers

Abstract

In the present work, the interpretation of the structure, nucleation and growth of Vanadium films will be studied. Film structure was inferred from transmission electron diffraction and microscopy of vanadium films evaporated simultaneously onto freshly cleaved rocksalt and carbon substrate. The investigated films were from about 10 to 80 nm thick, and the rate of the deposition was fixed at 3 nm sec-' throughout this work. The optical constants were determined for vanadium from transmission measurements on vacuum-evaporated polycrystalline thin films at room temperature in the infrared range. Transmission measurements were made on films in the thickness range 100 to 150 nm.

Keywords

Polymer Microscopy Thin Film Vanadium Optical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Nestell, Jr., R. W. Christy, Mitchell H. Cohen andG. C. Ruben,J. Appl. Phys. 51 (1980) 655.Google Scholar
  2. 2.
    O. S. Heavens, “Optical Properties of Thin Solid Films” (Butterworths, London, 1955).Google Scholar
  3. 3.
    G. V. Rozenberg, “Optics of Thin Films” (Fitzmatgiz, Moscow, 1958).Google Scholar
  4. 4.
    G. Chassaing, P. Gravier, M. Sigrist andR. Pierrisnard,Solid State Commun. 15 (1974) 1613.Google Scholar
  5. 5.
    M. Sigrist, G. Chassaing andP. Gravier,ibid. 17 (1975) 647.Google Scholar
  6. 6.
    G. Chassaing, P. Gravier andM. Singrist,Thin Solid Films 35 (1976) 125.Google Scholar
  7. 7.
    M. Yasui, E. Hayashi andM. Shimizu,J. Phys. Soc. Jpn. 29 (1970) 1446.Google Scholar
  8. 8.
    D. L. Misell andA. J. Atkins,Phil. Mag. 1 (1973) 95.Google Scholar
  9. 9.
    L. Fiermans andJ. Vennik,Phys. Status Solidi 41 (1970) 621.Google Scholar
  10. 10.
    V. F. Ormont, “Structure of Inorganic Substances GITTL”, (Moscow, 1950).Google Scholar
  11. 11.
    V. G. Pyn'ko, L. I. Kveglis andV. S. Korchmar,Soviet Physics-Solid State 13 (1972) 2800.Google Scholar
  12. 12.
    P. B. Johnson andR. W. Christy,Phys. Rev. B (USA) 9 (1974) 5056.Google Scholar
  13. 13.
    Y. Saito, S. Yatsuya, K. Mihama andR. Uyeda,J. Cryst. Growth 45 (1978) 501.Google Scholar
  14. 14.
    K. Kimoto,J. Cryst. Soc. Jpn. 14 (1972) 119.Google Scholar
  15. 15.
    S. Tolansky, in “Introduction to Interferometry” (Longmans Green & Co. London, New York, Toronto, 1955) 157.Google Scholar
  16. 16.
    L. G. Schulz,J. Opt. Soc. Amer. 43 (1953) 406.Google Scholar
  17. 17.
    M. R. Tubbs,Proc. R. Soc. London A288 (1964) 566.Google Scholar
  18. 18.
    W. H. Brattain andH. B. Briggs,Phys. Rev. 75 (1949) 1705.Google Scholar
  19. 19.
    Z. H. Meiksin,Phys. of Thin Films 8 (1975) 99.Google Scholar
  20. 20.
    J. Van De Waterbeend,Philips. Res. Repts 21 (1966) 27.Google Scholar
  21. 21.
    Z. G. Pinsker, “Electron diffraction”, (Butterworths, London, 1953).Google Scholar
  22. 22.
    G. Thomas, “Transmission electron microscopy of metals”, (John Wiley & Sons., Inc., New York, 1962).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • S. Mahmoud
    • 1
  • Z. S. El Mandouh
    • 1
  1. 1.Physics DepartmentNational Research CentreCairoUAR

Personalised recommendations