Advertisement

Journal of Materials Science

, Volume 22, Issue 8, pp 2783–2788 | Cite as

Formation and growth of iron nitrides during ion-nitriding

  • E. Metin
  • O. T. Inal
Papers

Abstract

In order to clarify the formation and growth kinetics of iron nitrides, Fe2N (ζ), Fe2–3N (ɛ) and Fe4N (γ′), on the surface of iron during ion-nitriding, and their contribution to the mechanism of ion-nitriding coarse-grained specimens (2 to 6 mm) were ion-nitrided in pure nitrogen and nitrogen-hydrogen (20%–80%) plasma at temperatures between 500 and 600°C. Reflection electron diffraction (RED) showed immediate formation of the nitrides. Growth of these phases in latter stages of ion-nitriding was studied using optical microscopy and X-ray diffraction. The mechanism of the nitride layer formation is discussed and compared with the existing gas nitriding data. In the case region, Fe4N (γ′) and Fe16N2 (α″) precipitation was observed to occur under all experimental conditions studied. Case depth is seen to be parabolic with time and nitriding rate increases slightly when nitrogen-hydrogen plasma is used. Discussions are given to explain the difference in the nitriding efficiency under two different plasma compositions.

Keywords

Precipitation Nitrides Optical Microscopy Electron Diffraction Growth Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. V. Robino andO. T. Inal,Mater. Sci. Eng. 59 (1982) 79.Google Scholar
  2. 2.
    K. Ozbaysal, O. T. Inal andA. D. Romig,ibid. 78 (1986) 179.Google Scholar
  3. 3.
    K. Ozbaysal andO. T. Inal,J. Mater. Sci. 21 (1986) 4318.Google Scholar
  4. 4.
    H. Strack,J. Appl. Phys. 34 (1963) 2405.Google Scholar
  5. 5.
    M. Hudis,ibid. 44 (1973) 1489.Google Scholar
  6. 6.
    A. V. Brokman andR. F. Tuler,ibid. 52 (1981) 468.Google Scholar
  7. 7.
    G. G. Tibbetts,ibid. 45 (1974) 5072.Google Scholar
  8. 8.
    B. Edenhofer,Heat Treat. Met. 1 (1974) 23.Google Scholar
  9. 9.
    YU. M. Lakhtin, Ya. D. Kogan andV. N. Shaposhnikov,Metall. Term. Obrabotka Metallov 6 (1976) p. 2.Google Scholar
  10. 10.
    K. T. Rie andTh. Lampe,Mater. Sci. Eng. 69 (1985) 475.Google Scholar
  11. 11.
    A. Scherer andO. T. Inal,Thin Solid Films 119 (1984) 413.Google Scholar
  12. 12.
    O. T. Inal andC. V. Robino,ibid. 95 (1982) 195.Google Scholar
  13. 13.
    Y. Inokuti, N. Nishida andN. Ohashi, “Source book on nitriding” (ASM, 1977) p. 303.Google Scholar
  14. 14.
    H. C. F. Rozendaal, E. J. Mittemeijer, P. F. Collin andP. J. Van Der Schaaf,Metal. Trans. A 14A (1983) 395.Google Scholar
  15. 15.
    A. H. Etoukhy andJ. E. Greene,J. Appl. Phys. 51 (1980) 4444.Google Scholar
  16. 16.
    A. R. Wazzan,ibid. 36 (1965) 3596.Google Scholar
  17. 17.
    K. Schwerdtfeger, P. Grieveson andE. T. Turkdogan,Trans. RIME 245 (1969) 2461.Google Scholar
  18. 18.
    R. F. Mehl, C. S. Barrett andH. S. Jerabek,ibid. 113 (1934) 211.Google Scholar
  19. 19.
    K. H. Jack,Proc. R. Soc. A208 (1951) 216.Google Scholar
  20. 20.
    W. T. M. Straver, H. C. F. Rozendaal andE. J. Mittemeijer,Met. Trans. A 15A (1984) 627.Google Scholar
  21. 21.
    J. W. Christian, “Transformations in Metals and Alloys” (Pergamon Oxford, 1975).Google Scholar
  22. 22.
    J. R. G. Da Silva andRex B. McLellan,Mater. Sci. Eng. 26 (1976) 83.Google Scholar
  23. 23.
    A. Gicquel, M. P. Bergougnan, J. Amouroux andD. Rapakoulias, “Plasma chemistry and technology”, Proceedings of the Conference, San Diego, California (1982) p. 159.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • E. Metin
    • 1
  • O. T. Inal
    • 1
  1. 1.Materials and Metallurgical Engineering DepartmentNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations