Advertisement

Journal of Materials Science

, Volume 22, Issue 8, pp 2661–2679 | Cite as

Production, properties and applications of microwire and related products

  • I. W. Donald
Review

Abstract

Methods available for the production of microwire, defined as fine filament of circular cross-section and diameter less than 1001 cm, are reviewed, with particular attention being devoted to the versatile Taylor-wire route. The process parameters which are considered to be important in determining the quality of material produced by this and other related techniques, and the types and properties of microwire, are outlined and compared. Techniques for producing related materials, including fibre of non-circular cross-section and narrow ribbon, are also reviewed briefly. In conclusion, a number of potential applications for microwire materials are discussed.

Keywords

Polymer Potential Application Related Product Related Material Related Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. F. Taylor,Phys. Rev. 23 (1924) 655.Google Scholar
  2. 2.
    Idem, US Patent 1 793 529 (1931).Google Scholar
  3. 3.
    A. V. Ulitovsky,Pribory i technika eksperimenta 3 (1957) 115.Google Scholar
  4. 4.
    A. A. Baikov, French Patent 1361929 (1963).Google Scholar
  5. 5.
    V. I. Zaborovsky, V. I. Korobov andV. G. Krasinkov, French Patent 1452979 (1965).Google Scholar
  6. 6.
    Idem, British Patent 1120247 (1968).Google Scholar
  7. 7.
    V. I. Zaborovsky, O. A. Ivanov andA. N. Savenkov, British Patent 1157 313 (1969).Google Scholar
  8. 8.
    Idem, US Patent 3607201 (1971).Google Scholar
  9. 9.
    W. L. McKenica, US Patent 3214805 (1965).Google Scholar
  10. 10.
    J. E. Cox, R. D. Veltri andC. E. Shulze, “Exploratory investigation of glass metal composite fibres”, United Aircraft Corp. Final Report No. D910242-6, East Hartford (1965).Google Scholar
  11. 11.
    P. J. Soltis, “Evaluation of the structure and strength of glass-drawn copper microwire”, NAEC-AML-2424, Philadelphia (1966).Google Scholar
  12. 12.
    A. C. Arno, “The development of microwires with high melting points”, Final Report Contract No. KH/L/521/CB. 19(6)2 (Glass Developments Ltd, 1966).Google Scholar
  13. 13.
    Anon.,Composites 1 (1970) 167.Google Scholar
  14. 14.
    B. Harris-Maddox, Glass Developments Ltd, private communication, (1984).Google Scholar
  15. 15.
    J. Nixdorf,Drahtwelt 53 (1967) 696 (in German).Google Scholar
  16. 16.
    W. Dannöhl andJ. Nixdorf, US Patent 3 362803, (1968).Google Scholar
  17. 17.
    H. Grunthaler, J. Nixdorf andH. Rochow,Metallwissenschaft und Technik 23 (1969) 310 (in German).Google Scholar
  18. 18.
    J. Nixdorf,Proc. R. Soc. A319 (1970) 17.Google Scholar
  19. 19.
    I. S. Miroshnichenko, V. F. Bashev, YU. K. Pokrovskiy andE. Z. Spektor,Russ. Metall. 1 (1980) 105.Google Scholar
  20. 20.
    V. F. Bashev,Phys. Met. Metall. 55 (2) (1983) 114.Google Scholar
  21. 21.
    G. Manfrè andD. Vianello, Italian Patent 930409 (1972).Google Scholar
  22. 22.
    H. J. Bunge andE. Irmer,Krist. Techn. 8 (1973) 355 (in German).Google Scholar
  23. 23.
    G. Manfrè, G. Servi andC. Ruffino,J. Mater. Sci. 9 (1974) 74.Google Scholar
  24. 24.
    H. Wiesner andJ. Schneider,Phys. Status Solidi 26 (1974) 71.Google Scholar
  25. 25.
    H. J. Bungs,Z. Metallkde 67 (1976) 720.Google Scholar
  26. 26.
    G. Haour andH. Bode, in Proceedings of Conference “From melt to wire”, Torremolinos, April 1979 (International Wire and Machinery Associations, Oxted, UK, 1979) II/2/ 1–10.Google Scholar
  27. 27.
    R. B. Pond, R. E. Maringer andC. E. Mobley, in “New trends in materials processing”, edited by C. S. Hartley, T. E. Tictz and B. H. Kear (ASM, Metals Park, Ohio, 1976) pp. 128–164.Google Scholar
  28. 28.
    G. W. F. Pardoe, E. Butler andD. Gelder,J. Mater. Sci. 13 (1978) 786.Google Scholar
  29. 29.
    T. Gotō,Bull. Jpn Inst. Metals 15 (1976) 633 (in Japanese).Google Scholar
  30. 30.
    T. Gotō andM. Nagano,Sen-I Gakkaishi 33 (1977) T302 (in Japanese).Google Scholar
  31. 31.
    T. Gotō, M. Nagano andK. Tanaka,Trans. Jpn Inst. Met. 18 (3) (1977) 209.Google Scholar
  32. 32.
    T. Gotō, H. Murakami, K. Tanaka andM. Nagano,ibid. 18 (8) (1977) 557.Google Scholar
  33. 33.
    T. Gotō andM. Nagano,ibid. 18 (8) (1977) 562.Google Scholar
  34. 34.
    T. Gotō, M. Nagano andN. Wehara,ibid. 18 (11) (1977) 759.Google Scholar
  35. 35.
    T. Gotō,Sen-I Gakkaishi 34 (1978) T237 (in Japanese).Google Scholar
  36. 36.
    Idem, Gold Bull. 11 (4) (1978) 124.Google Scholar
  37. 37.
    Idem, Trans. Jpn Inst. Met. 20 (1979) 377.Google Scholar
  38. 38.
    Idem, ibid. 21 (1980) 219.Google Scholar
  39. 39.
    Idem, ibid. 22 (2) (1981) 96.Google Scholar
  40. 40.
    Idem, ibid. 22 (11) (1981) 753.Google Scholar
  41. 41.
    Idem, ibid. 23 (5) (1982) 278.Google Scholar
  42. 42.
    Idem, in Proceedings of 4th International Conference on Rapidly Quenched Metals, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Sendai, 1982) p. 1233.Google Scholar
  43. 43.
    Idem, Mater. Sci. Eng. 59 (1983) 251.Google Scholar
  44. 44.
    Idem, Trans. Jpn Inst. Met. 24 (8) (1983) 595.Google Scholar
  45. 45.
    Idem, ibid. 25 (5) (1984) 319.Google Scholar
  46. 46.
    T. Gotō andM. Hayashi,ibid. 26 (6) (1985) 444.Google Scholar
  47. 47.
    T. Gotō andN. Waku,J. Mater. Sci. 20 (1985) 532.Google Scholar
  48. 48.
    T. Gotō andT. Toyama,ibid. 20 (1985) 1883.Google Scholar
  49. 49.
    T. Gotō andA. Yoshino,ibid. 21 (1986) 1809.Google Scholar
  50. 50.
    H. A. Davies, in “Rapidly Quenched Metals III”, Vol. 1, edited by B. Cantor (Metals Society, London, 1978) pp. 1–21.Google Scholar
  51. 51.
    Idem (Butterworths, London, 1983) pp. 8–25.Google Scholar
  52. 52.
    I. W. Donald andH. A. Davies,J. Mater. Sci. 15 (1980) 2754.Google Scholar
  53. 53.
    J. Reeve, H. A. Davies andI. W. Donald, in Proceedings of 4th International Conference on Rapidly Quenched Metals, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Sendai, 1982) p. 221.Google Scholar
  54. 54.
    B. L. Metcalfe, A. J. Jeffery andI. W. Donald, unpublished work (1986).Google Scholar
  55. 55.
    R. B. Pond, US Patent 2976590 (1961).Google Scholar
  56. 56.
    N. E. Aller andW. E. Smith, US Patent 3216076 (1965).Google Scholar
  57. 57.
    N. V. Shepel'skii andV. Z. Zhilkin,Sov. Powder Met. Ceram. 10 (1969) 813.Google Scholar
  58. 58.
    Monsanto Company, British Patent 1 153 577 (1969).Google Scholar
  59. 59.
    Idem, British Patent 1 197972 (1970).Google Scholar
  60. 60.
    Idem, British Patent 1210 920 (1970).Google Scholar
  61. 61.
    J. L. Engelke, US Patent 3347959 (1967).Google Scholar
  62. 62.
    S. Kavesh, US Patent 3845805 (1974).Google Scholar
  63. 63.
    I. Ohnaka, T. Fukusako andT. Ohmichi,J. Jpn Inst. Met. 45 (7) (1981) 751 (in Japanese).Google Scholar
  64. 64.
    T. Ohnaka, T. Fukusako, T. Ohmichi, T. Masumoto, A. Inoue andM. Hagiwara, in Proceedings of 4th International Conference on Rapidly Quenched Metals, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Sendai, 1982) p. 31.Google Scholar
  65. 65.
    A. Inoue, M. Hagiwara andT. Masumote,ibid. p. 1399.Google Scholar
  66. 66.
    A. Inoue, T. Masumoto andH. Tomiaka,J. Mater. Sci. 19 (1984) 3097.Google Scholar
  67. 67.
    A. Inoue, T. Masumoto andN. Yano,ibid. 19 (1984) 3786.Google Scholar
  68. 68.
    A. Inoue, H. Tomiaka andT. Masumoto,ibid. 20 (1985) 2603.Google Scholar
  69. 69.
    I. Ohnaka,Int. J. Rapid Solid. 1 (3) (1985) 219.Google Scholar
  70. 70.
    R. V. Raman, A. N. Patel andR. S. Carbonara,Prog. Powder Metall. 38 (1982) 99.Google Scholar
  71. 71.
    J. W. Mottern andW. J. Privott (eds), “Spinning wire from molten metal”, Vol. 74 (American Institute of Chemical Engineers, (New York 1978).Google Scholar
  72. 72.
    J. A. Roberts andP. R. Roberts, US Patent 3 394 213 (1968).Google Scholar
  73. 73.
    Idem, US Patent 3 505 039 (1970).Google Scholar
  74. 74.
    Y. Tada, H. Ogita andT. Yoda, US Patent 3 838 488 (1974).Google Scholar
  75. 75.
    R. Pond, US Patent 2826108 (1958).Google Scholar
  76. 76.
    H. H. Liebermann andC. D. Graham,IEEE Trans. Magn. MAG-12 (1976) 921.Google Scholar
  77. 77.
    E. A. Strange andC. H. Pim, US Patent 905758 (1908).Google Scholar
  78. 78.
    E. Babil,J. Phys. E (Sci. Inst.) 3 (1970) 1014.Google Scholar
  79. 79.
    H. S. Chen andC. E. Miller,Rev. Sci. Inst. 41 (1970) 1237.Google Scholar
  80. 80.
    B. G. Lewis, I. W. Donald andH. A. Davies, in “Solidification and casting of metals” (The Metals Society, London, 1978) pp. 490–495.Google Scholar
  81. 81.
    R. E. Maringer andC. E. Mobley,J. Vac. Sci. Technol. 11 (1974) 1067.Google Scholar
  82. 82.
    D. L. K. King,Metals 2 (1967) 33.Google Scholar
  83. 83.
    Battelle Corp., US Patent 3 522 836 (1970).Google Scholar
  84. 84.
    I. G. Butler, W. Kurz, J. Gillot andB. Lux,Fibre Sci. Tech. 5 (1972) 243.Google Scholar
  85. 85.
    S. Kavesh, in Proceedings of International Conference on Rapid Solidification Processing, Reston, November, 1977, edited by R. Mehrabian, B. H. Kear and M. Cohen (Claitors, Baton Rouge, 1978) p. 165.Google Scholar
  86. 86.
    S. R. Robertson, T. J. Gorsuch andR. P. I. Adler,ibid. p. 188.Google Scholar
  87. 87.
    R. E. Maringer andC. E. Mobley,ibid. p. 208.Google Scholar
  88. 88.
    H. Jones, “Rapid Solidification of Metals and Alloys”, IM Monograph No. 8 (Institution of Metallurgists, London, 1982).Google Scholar
  89. 89.
    English Electric Co., French Patent 1466 793 (1967).Google Scholar
  90. 90.
    P. W. McMillan, B. P. Hodgson, D. S. Crozier andS. T. Wells, British Patent 1174 474 (1969).Google Scholar
  91. 91.
    W. J. Miriam, British Patent 1026 178 (1966).Google Scholar
  92. 92.
    A. Potter andJ. E. Henning, “Continuous glass coating of fine metal wires”, in Energ. Mater: Proceedings of Mater. Process Eng. Nat. Symp. Exhib, Chicago 1968, p. 417.Google Scholar
  93. 93.
    I. V. Litvinenko, A. P. Bibik andI. V. Radchenko,Pribory i technika eksperimenta 5 (1965) 252.Google Scholar
  94. 94.
    I. W. Donald andP. W. McMillan,J. Mater. Sci. 11 (1976) 949.Google Scholar
  95. 95.
    D. C. Phillips, “Fibre reinforced ceramics”, in Handbook of Composites, Vol. 4, edited by A. Kelly and S. T. Mileiko (Elsevier, Amsterdam, 1983) p. 373.Google Scholar
  96. 96.
    R. W. Rice, in Proceedings of 5th Annual Conference on Composites and Advanced Ceramic Materials (American Ceramic Society, Columbus, 1981) p. 661.Google Scholar
  97. 97.
    P. Bracke, H. Schurmans andJ. Verhoest, in “Inorganic Fibres and Composite Materials (Pergamon, Oxford, 1984) p. 97.Google Scholar
  98. 98.
    L. J. Schioler andJ. J. Stiglich,Bull. Amer. Ceram. Soc. 65 (2) (1986) 289.Google Scholar
  99. 99.
    I. W. Donald andP. W. McMillan,J. Mater. Sci. 12 (1977) 290.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • I. W. Donald
    • 1
  1. 1.Atomic Weapons Research EstablishmentAldermastonUK

Personalised recommendations