Theoretical and Mathematical Physics

, Volume 56, Issue 3, pp 847–862 | Cite as

Hamiltonian structures for integrable models of field theory

  • N. Yu. Reshetikhin
  • L. D. Faddeev
Article

Keywords

Field Theory Integrable Model Hamiltonian Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett.,19, 1095 (1967).Google Scholar
  2. 2.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980).Google Scholar
  3. 3.
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).Google Scholar
  4. 4.
    V. E. Zakharov and L. D. Faddeev, Funktsional. Analiz i Ego Prilozhen.,5, 18 (1971).Google Scholar
  5. 5.
    E. K. Sklyanin, Zap. Nauchn. Semin. LOMI,95, 55 (1980).Google Scholar
  6. 6.
    L. D. Faddeev, “Integrable models in 1+1 dimensional quantum field theory,” Preprint CEN-SACLAY S. Ph. T. (1982).Google Scholar
  7. 7.
    S. Lie, Theorie der Transformationsgruppen, Vol. 3, Leipzig (1983).Google Scholar
  8. 8.
    A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1978).Google Scholar
  9. 9.
    L. A. Takhtadzhyan and L. D. Faddeev, Zap. Nauchn. Semin. LOMI,115, 264 (1982).Google Scholar
  10. 10.
    A. G. Reiman, Zap. Nauchn. Semin. LOMI,95, 3 (1980).Google Scholar
  11. 11.
    A. G. Reiman and M. A. Semenov-Tyan-Shanskii, Dokl. Akad. Nauk SSSR,261, 1310 (1980).Google Scholar
  12. 12.
    L. A. Takhtajan, Phys. Lett. A,64, 235 (1977).Google Scholar
  13. 13.
    V. E. Zakharov and S. V. Manakov, Teor. Mat. Fiz.,19, 332 (1974).Google Scholar
  14. 14.
    S. V. Manakov, Zh. Eksp. Teor. Fiz.,65, 505 (1973).Google Scholar
  15. 15.
    P. P. Kulish and A. F. Fordy, “Nonlinear Schrödinger equations and simple Lie algebras,” Preprint VMIST, Manchester (1982).Google Scholar
  16. 16.
    É. B. Vinberg, Izv. Akad. Nauk SSSR, Ser. Mat.,40, 488 (1976).Google Scholar
  17. 17.
    A. A. Belavin and V. G. Drinfel'd, “Triangle equations and simple Lie algebras,” Preprint 1982-18 [in Russian], L. D. Landau Institute of Theoretical Physics, Chernogolovka (1982).Google Scholar
  18. 18.
    A. V. Mikhailov Physica (Utrecht),3D, 73 (1981).Google Scholar
  19. 19.
    E. I. Sklyanin, “On complete integrability of the Landau-Lifshitz equation,” Preprint E-3-79 [in English], Leningrad Branch, V. A. Steklov Mathematics Institute Leningrad (1979).Google Scholar
  20. 20.
    L. A. Takhtadzhyan and L. D. Faddeev, Teor. Mat. Fiz.,21, 160 (1974); L. D. Faddeev and V. E. Korepin, Phys. Rep.,42C, 1 (1978).Google Scholar
  21. 21.
    A. G. Izergin and V. E. Korepin, Dokl. Akad. Nauk SSSR,259, 76 (1981).Google Scholar
  22. 22.
    A. G. Izergin and V. E. Korepin, Fiz. elem. Chastits At. Yadra,13, 501 (1982).Google Scholar
  23. 23.
    A. G. Izergin and V. E. Korepin, Lett. Math. Phys.,5, 199 (1981).Google Scholar
  24. 24.
    V. G. Drinfel'd, Dokl. Akad. Nauk SSSR268, 285 (1983).Google Scholar
  25. 25.
    P. P. Kulish and E. K. Sklyanin, Phys. Lett. A,84, 349 (1981).Google Scholar
  26. 26.
    P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, Lett. Math. Phys.,5, 393 (1981).Google Scholar
  27. 27.
    E. K. Sklyanin, Funktsional. Analiz i Ego Prilozhen.,16, 27 (1982).Google Scholar
  28. 28.
    M. A. Semenov-Tyan-Shanskii, Zap. Nauchn. Semin. LOMI,123, 77 (1983).Google Scholar
  29. 29.
    A. G. Reyman and M. A. Semenov-Tian-Shansky, Inv. Math.,54, 81 (1979).Google Scholar
  30. 30.
    B. Kostant “Quantization and representation theory, Lect. Notes of London Math. Soc.,34 (1979).Google Scholar
  31. 31.
    V. I. Smirnov, Course of Higher Mathematics, Vol. 3 [in Russian], Nauka, Moscow (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • N. Yu. Reshetikhin
  • L. D. Faddeev

There are no affiliations available

Personalised recommendations