Functional Analysis and Its Applications

, Volume 18, Issue 3, pp 210–223 | Cite as

The laplace method, algebraic curves, and nonlinear equations

  • I. M. Krichever


Functional Analysis Nonlinear Equation Algebraic Curf Laplace Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. P. Novikov, "Two-dimensional Schrödinger operators in periodic fields," Itogi Nauki i Tekhniki, Sov. Probl. Mat.,23, 3–32 (1983).Google Scholar
  2. 2.
    F. Calogero and A. Degasperis, "Inverse spectral problem for the one-dimensional Schrödinger equation with an additional linear potential," Lett. Nuovo Cimento,23, 143–149 (1978).Google Scholar
  3. 3.
    F. Calogero and A. Degasperis, "Solution by the spectral transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation," Lett. Nuovo Cimento,23, 150–154 (1978).Google Scholar
  4. 4.
    F. Calogero and A. Degasperis, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations, Vol. I, North-Holland, Amsterdam (1982).Google Scholar
  5. 5.
    Li Yishen, "One special inverse problem of the second order differential equation on the whole real axis," Chinese Ann. Math.,2, 147–156 (1981).Google Scholar
  6. 6.
    S. Graffi and E. Harrell, "Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation," Ann. Inst. H. Poincaré,36, No. 1, 41–58 (1982).Google Scholar
  7. 7.
    E. Goursat, Cours d'Analyse Mathematique, Tome II, Gauthier-Villars, Paris (1933).Google Scholar
  8. 8.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, "Nonlinear equations of Korteweg—de Vries type, finite-zone linear operators, and Abelian varieties," Usp. Mat. Nauk,31, No. 1, 55–136 (1976).Google Scholar
  9. 9.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons. The Method of the Inverse Problem [in Russian], Nauka, Moscow (1980).Google Scholar
  10. 10.
    I. M. Krichever, "Methods of algebraic geometry in the theory of nonlinear equations," Usp. Mat. Nauk,32, No. 6, 183–208 (1977).Google Scholar
  11. 11.
    I. M. Krichever and S. P. Novikov, "Holomorphic bundles over algebraic curves, and nonlinear equations," Usp. Mat. Nauk,35, No. 6, 47–68 (1980).Google Scholar
  12. 12.
    B. A. Dubrovin, "Theta-functions and nonlinear equations," Usp. Mat. Nauk,36, No. 2, 11–80 (1981).Google Scholar
  13. 13.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, "Topological and algebraic geometry methods in contemporary mathematical physics. II," Soviet Scientific Reviews. Math. Phys. Reviews, Vol. 3, OPA, Amsterdam (1982).Google Scholar
  14. 14.
    I. M. Krichever, "Nonlinear equations and elliptic curves," Itogi Nauki i Tekhniki, Sov. Probl. Mat.,23, 79–136 (1983).Google Scholar
  15. 15.
    B. A. Dubrovin, "Matricial finite-zone operators," Itogi Nauki i Tekhniki, Sov. Probl. Mat.,23, 33–78 (1983).Google Scholar
  16. 16.
    I. M. Krichever and S. P. Novikov, "Holomorphic bundles over Riemann surfaces and the Kadomtsev—Petviashvili equation. I," Funkts. Anal. Prilozhen.,12, No. 4, 41–52 (1978).Google Scholar
  17. 17.
    I. M. Krichever and S. P. Novikov, "Holomorphic bundles and nonlinear equations. Finitezone solutions of rank 2," Dokl. Akad. Nauk SSSR,247, No. 1, 33–37 (1979).Google Scholar
  18. 18.
    V. E. Zakharov and A. B. Shabat, "A plan for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I," Funkts. Anal. Prilozhen.,8, No. 3, 43–53 (1974).Google Scholar
  19. 19.
    I. M. Krichever, "An algebraic-geometric construction of the Zakharov-Shabat equations and their periodic solutions," Dokl. Akad. Nauk SSSR,227, No. 2, 291–294 (1976).Google Scholar
  20. 20.
    I. M. Krichever, "Integration of nonlinear equations by the methods of algebraic geometry," Funkts. Anal. Prilozhen.,11, No. 1, 15–31 (1977).Google Scholar
  21. 21.
    G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading (1957).Google Scholar
  22. 22.
    I. V. Cherednik, "On conditions for reality in finite-zone integration," Dokl. Akad. Nauk SSSR,252, No. 5, 1104–1108 (1980).Google Scholar
  23. 23.
    I. M. Krichever, "An analogue of the d'Alembert formula for the equations of a principal chiral field and the sine-Gordon equation," Dokl. Akad. Nauk SSSR,253, No. 2, 288–292 (1980).Google Scholar
  24. 24.
    A. N. Leznov and M. N. Saveliev, "On the two-dimensional system of differential equations," Commun. Math. Phys.,74, 111–119 (1980).Google Scholar
  25. 25.
    P. Mansfield, "Solutions of Toda lattice," Preprint Cambridge Univ., CB 39 EW (1982).Google Scholar
  26. 26.
    A. V. Mikhailov, "On the integrability of the two-dimensional generalization of the Toda chain," Pis'ma Zh. Eksp. Teor. Fiz.,30, 443–448 (1978).Google Scholar
  27. 27.
    E. Date and S. Tanaka, "Exact solutions for the periodic Toda lattice," Progr. Theor. Phys.,53, 267–273 (1976).Google Scholar
  28. 28.
    I. M. Krichever, "Algebraic curves and nonlinear difference equations," Usp. Mat. Nauk,33, No. 4, 215–216 (1978).Google Scholar
  29. 29.
    A. R. Its and V. B. Matveev, "On a class of solutions of the Korteweg—de Vries equation," in: Problems of Mathematical Physics [in Russian], Vol. 8, Leningrad State Univ. (1978).Google Scholar
  30. 30.
    J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math.,352, Springer-Verlag, Berlin (1973).Google Scholar
  31. 31.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vols. I and II, McGraw-Hill, New York (1953).Google Scholar
  32. 32.
    L. D. Landau and E. M. Lifshits (Lifshitz), Quantum Mechanics. Non-Relativistic Theory, Addison-Wesley, Reading (1958).Google Scholar
  33. 33.
    V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973).Google Scholar
  34. 34.
    S. V. Manakov, "On complete integrability and stochastization in discrete dynamical systems," Zh. Eksp. Teor. Fiz.,67, No. 2, 543–555 (1974).Google Scholar
  35. 35.
    I. M. Krichever, "The algebraic-geometric spectral theory of the Schrödinger difference operator and the Peierls model," Dokl. Akad. Nauk SSSR,265, No. 5, 1054–1058 (1982).Google Scholar
  36. 36.
    L. A. Bordag and V. B. Matveev, "Darboux transformation and explicit solutions of the cylindrical KdV," Preprint LPTH E No. 6, Leipzig (1979).Google Scholar
  37. 37.
    V. S. Dryuma, "Analytic solutions of the axisymmetric Korteweg—de Vries equation," Izv. Akad. Nauk Moldav. SSR,3, 297–301 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • I. M. Krichever

There are no affiliations available

Personalised recommendations