Ukrainian Mathematical Journal

, Volume 34, Issue 1, pp 103–107 | Cite as

Boundary-value problems for the heat equation with a time derivative in the matching conditions

  • L. P. Nizhnik
  • L. A. Taraborkin
Brief Communications


Heat Equation Matching Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. A. Mitropol'skii, L. P. Nizhnik, and V. L. Kul'chitskii, “Nonlinear heat equations with a time derivative in the boundary condition,” Inst. Mat. Akad. Nauk Ukr. SSR, Preprint No. IM-74-15, Kiev (1974).Google Scholar
  2. 2.
    O. A. Oleinik, “Equations of elliptic and parabolic type with discontinuous coefficients,” Usp. Mat. Nauk,14, No. 5, 164–166 (1959).Google Scholar
  3. 3.
    Z. G. Sheftel', “Energy inequalities and general boundary-value problems for elliptic equations with discontinuous coefficients,” Sib. Mat. Zh.,6, No. 3, 636–669 (1965).Google Scholar
  4. 4.
    M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, and P. E. Sobolevskii, Integral Operators in Spaces of Integrable Functions [in Russian], Nauka, Moscow (1972).Google Scholar
  5. 5.
    S. G. Krein (ed.), Functional Analysis [in Russian], Nauka, Moscow (1972).Google Scholar
  6. 6.
    Yu. M. Berezanskii, Expansions in Eigenfunction of Selfadjoint Operators, Amer. Math. Soc. (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • L. P. Nizhnik
    • 1
  • L. A. Taraborkin
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRUSSR

Personalised recommendations