Ukrainian Mathematical Journal

, Volume 26, Issue 1, pp 1–8 | Cite as

A boundary value problem with control in the initial function for nonlinear systems of differential equations with a lagging argument

  • Kh. Bensaad
  • S. B. Norkin
Article
  • 17 Downloads

Keywords

Differential Equation Nonlinear System Initial Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. M. Zverkin, G. A. Kamenskii, S. B. Norkin, “On the posing of the initial value problem for differential equations with a lagging argument,” Uspekhi Matem. Nauk,15, No. 6(96) (1960).Google Scholar
  2. 2.
    Z. B. Seidov, “Solution of one boundary value problem with a parameter for differential equations with a lagging argument,” Uch. Zap. Azer. Gos. Univ., Ser. Fiz.-Matem. Nauk, No. 1 (1966).Google Scholar
  3. 3.
    Z. B. Seidov, “Boundary value problems with a parameter for differential equations in Banach space,” Sibirsk. Matem. Zh.,9, No. 1 (1968).Google Scholar
  4. 4.
    V. V. Mosyagin, “Boundary value problem for differential equations with a lagging argument in Banach space,” Uch. Zap. LGPI,387 (1968).Google Scholar
  5. 5.
    G. A. Kamenskii, “Boundary value problem for a first-order nonlinear differential equation of neutral type with a deviating argument,” Proc. Seminar Theory Diff. Eqs. with Deviating Argument, Vol. 3 [in Russian] (1965).Google Scholar
  6. 6.
    Kh. Bensaad, “Boundary value problem for an nth-order nonlinear differential equation of neutral type with a deviating argument,” Sb. Nauchnykh Rabot Aspirantov UDN, No. 7 (1970).Google Scholar
  7. 7.
    L. S. Gnoenskii, “On leading a time-lag system to a given position by choosing the initial function,” Proc. Seminar Theory Diff. Eqs. with Deviating Argument, Vol. 3 [in Russian] (1965).Google Scholar
  8. 8.
    L. É. Él'sgol'ts, Qualitative Methods in Mathematical Analysis [in Russian], Gostekhizdat, Moscow (1955).Google Scholar
  9. 9.
    R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press Inc., New York (1963).Google Scholar
  10. 10.
    S. N. Chernikov, “Systems of linear inequalities,” Uspekhi Matem. Nauk,8, No. 2(54) (1953).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1974

Authors and Affiliations

  • Kh. Bensaad
    • 1
  • S. B. Norkin
    • 1
  1. 1.Moscow Automotive-Transportation InstituteUSSR

Personalised recommendations