Functional Analysis and Its Applications

, Volume 27, Issue 2, pp 81–96 | Cite as

Dressing chains and the spectral theory of the Schrödinger operator

  • A. P. Veselov
  • A. B. Shabat


Functional Analysis Spectral Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. P. Novikov, “Periodic problem for the Korteweg—de Vries equation. I,” Funkts. Anal. Prilozhen.,8, No. 3, 54–66 (1974).Google Scholar
  2. 2.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of KdV type, finite-zone linear operators and abelian varieties,” Usp. Mat. Nauk,31, No. 1, 55–136 (1976).Google Scholar
  3. 3.
    P. D. Lax, “Periodic solutions of Korteweg—de Vries equation,” Comm. Pure Appl. Math.,28, 141–188 (1975).Google Scholar
  4. 4.
    H. P. McKean and P. van Moerbeke, “The spectrum of Hill's equation,” Invent. Math.,30, 217–274 (1975).Google Scholar
  5. 5.
    V. A. Marchenko, Sturm—Liouville Operators and their Applications [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  6. 6.
    G. Darboux, “Sur la representations spherique des surfaces,” Compt. Rend.,94, 1343–1345 (1882).Google Scholar
  7. 7.
    M. M. Crum, “Associated Sturm—Liouville systems,” Quart. J. Math. Ser. 2,6, 121–127 (1955).Google Scholar
  8. 8.
    A. B. Shabat, “One-dimensional perturbations of a differential operator and inverse scattering problem,” Selecta Math. Soviet.,4, No. 1, 19–35 (1985).Google Scholar
  9. 9.
    P. Deift, “Application of a commutation formula,” Duke Math. J.,45, 267–310 (1978).Google Scholar
  10. 10.
    M. Adler and J. Moser, “On a class of polynomials connected with the Korteweg—de Vries equation,” Comm. Math. Phys.,61, 1–30 (1978).Google Scholar
  11. 11.
    A. B. Shabat, “The infinite-dimensional dressing dynamical system,” Inverse Problems,6, 303–308 (1992).Google Scholar
  12. 12.
    A. B. Shabat and R. I. Yamilov, “Symmetries of nonlinear chains,” Algebra Analiz,2, No. 2, 183–208 (1990).Google Scholar
  13. 13.
    A. P. Veselov, “On the Hamiltonian formalism for the Novikov—Krichever equation of commutativity of two operators,” Funkts. Anal. Prilozhen.,13, No. 1, 1–7 (1979).Google Scholar
  14. 14.
    J. L. Burchnall and T. W. Chaundy, “Commutative ordinary differential operators,” Proc. London Soc. Ser. 2,21, 420–440 (1923).Google Scholar
  15. 15.
    E. L. Ince, Ordinary Differential Equations, Dover, New York (1947).Google Scholar
  16. 16.
    F. Magri, “A simple model of an integrable Hamiltonian equation,” J. Math. Phys.,19, 1156–1162 (1978).Google Scholar
  17. 17.
    I. M. Gelfand and I. Ya. Dorfman, “Hamiltonian operators and connected algebraic structures,” Funkts. Anal. Prilozhen.,13, No. 4, 13–30 (1979).Google Scholar
  18. 18.
    M. Antonowicz, A. P. Fordy, and S. Wojciechowski, “Integrable stationary flows: Miura maps and bi-Hamiltonian structures,” Phys. Lett. A,124, 143–150 (1987).Google Scholar
  19. 19.
    J. Weiss, “Periodic fixed points of Bäcklund transformations and the KdV equation,” J. Math. Phys.,27 (11, 2647–2656 (1986);28 (9), 2025–2039 (1987).Google Scholar
  20. 20.
    P. Santini, “Solvable nonlinear algebraic equations,” Inverse Problems,6 (1990).Google Scholar
  21. 21.
    A. P. Veselov, “On the growth of the number of images of the point under the iterations of the multivalued mapping,” Mat. Zametki,49, No. 2, 29–35 (1991).Google Scholar
  22. 22.
    M. Adler and P. van Moerbeke, Algebraic Integrable Systems: a Systematic Approach. Perspectives in Math., Academic Press, Boston (1989).Google Scholar
  23. 23.
    V. E. Adler, “Recuttings of polygons,” Funkts. Anal. Prilozhen.,27, No. 2, 79–82 (1993).Google Scholar
  24. 24.
    F. J. Bureau, “Integration of some nonlinear systems of ordinary differential equations,” Annali Mat. Pura Appl. (IV),44, 345–360 (1972).Google Scholar
  25. 25.
    F. Ehlers and H. Knoerrer, “An algebro-geometric interpretation of the Bäcklund transformation for the Korteweg—de Vries equation,” Comm. Math. Helv.,57, No. 1, 1–10 (1982).Google Scholar
  26. 26.
    H. Bateman and A. Erdély, Higher Transcendental Functions. Vol. 3, McGraw-Hill (1955).Google Scholar
  27. 27.
    S. P. Novikov (ed.), Theory of Solitons [in Russian], Nauka, Moscow (1980).Google Scholar
  28. 28.
    H. P. McKean and E. Trubowitz, “The spectral class of the quantum mechanical harmonic oscillator,” Comm. Math. Phys.,82, 471–495 (1982).Google Scholar
  29. 29.
    B. M. Levitan, “On the Sturm—Liouville operators on the whole line with one and the same spectrum,” Mat. Sb.,132, No. 1, 73–103 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. P. Veselov
  • A. B. Shabat

There are no affiliations available

Personalised recommendations