Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Abstract algebraic geometry

  • 209 Accesses

  • 14 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    M. Artin, “Étale cohomology of schemes,” Uspekhi Mat. Nauk,20, No. 6, 13–18 (1965).

  2. 2.

    M. Artin, “Some numerical criteria for contractability of curves on algebraic surfaces,” Matematika (Periodic Collection of Translations of Foreign Articles),9, No. 3, 3–14 (1965).

  3. 3.

    M. Artin, “Algebraic approximation of structures over complete local rings,” Matematika (Periodic Collection of Translations of Foreign Articles),14, No. 3, 3–39 (1970).

  4. 4.

    M. Artin, “Algebraization of formal moduli. 1,” in: Global Analysis, Collection of Mathematical Papers in Honor of K. Kodaira, Univ. of Tokyo Press, Tokyo (1970).

  5. 5.

    M. Artin, Algebraic Spaces, mimeographed, The Whittemore Lectures, Yale Univ., New Haven, Conn. (1969).

  6. 6.

    M. F. Atiyah, R. Bott, and L. Gårding, “Lacunas for hyperbolic differential operators with constant coefficients. I,” Acta Math.,24, 109–189 (1970).

  7. 7.

    V. M. Barenbaum, “Chern classes of ample bundles,” Mat. Sb.,85, No. 1, 85–97 (1971).

  8. 8.

    Yu. R. Vainberg, “Algebraic varieties over fields with differentiation,” Mat. Sb.,80, No. 3, 417–444 (1969).

  9. 9.

    A. Yu. Geronimus, “Cohomologies of groups in categories,” Funktsional'. Analiz i Ego Prilozhen.,2, No. 3, 86 (1968).

  10. 10.

    A. Yu. Geronimus, “Lie groups and Grothendieck topology,” Uspekhi Mat. Nauk,26, No. 1, 219–220 (1971).

  11. 11.

    A. Yu. Geronimus, “Grothendieck topology and representation theory,” Funktsional'. Analiz i Ego Prilozhen.,5, No. 3, 22–31 (1971).

  12. 12.

    M. Kh. Gizatullin, “One example of a numerical criterion for ampleness,” Matem. Zametki,5, No. 2, 149–154 (1969).

  13. 13.

    H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen,” Math. Ann.,146, 331–368 (1962).

  14. 14.

    A. Grothendieck, “The cohomology theory of abstract algebraic varieties,” Proc. Internat. Congr. Mathematicians (Edinburgh, August 14–21, 1958), J. A. Todd (ed.), University Press, Cambridge (1960), pp. 103–118.

  15. 15.

    V. I. Danilov, “Groups of classes of ideals of a completed ring,” Mat. Sb.,77, No. 4, 533–541 (1968).

  16. 16.

    V. I. Danilov, “On Samuel's conjecture,” Mat. Sb.,81, No. 1, 132–144 (1970).

  17. 17.

    V. I. Danilov, “Rings with a discrete group of classes of divisors,” Mat. Sb.,83, No. 3, 372–389 (1970).

  18. 18.

    I. V. Dolgachev, “On the purity of the set of points of nonsmoothness of a morphism of schemata,” Dokl. Akad. Nauk SSSR,188, No. 4, 742–744 (1969).

  19. 19.

    I. V. Dolgachev and A. N. Parshin, “The different and the discriminant of regular mappings,” Matem. Zametki,4, No. 5, 519–524 (1968).

  20. 20.

    J. Dieudonne, “Algebraic geometry,” Matematika (Periodic Collection of Translations of Foreign Articles),9, No. 1, 54–126 (1962).

  21. 21.

    Yu. L. Ershov, “On rational points over Henselian fields,” Algebra i Logika, Seminar,6, No. 3, 39–49 (1967).

  22. 22.

    O. Zariski, “Algebraic theory of sheaves,” Matematika (Periodic Collection of Translations of Foreign Articles),4, No. 2, 3–24 (1960).

  23. 23.

    V. A. Iskovskikh, “Rational surfaces with a sheaf of rational curves,” Mat. Sb.,74, No. 4, 608–638 (1967).

  24. 24.

    U. Kal'yulaid, “On the cohomological dimension of certain quasiprojective varieties,” ENSV Tead. Akad. Toimetised. Füüs., Mat., Izv. Akad. Nauk Éston. SSR, Fiz. Mat.,18, No. 3, 261–272 (1969).

  25. 25.

    N. M. Katz and T. Oda, “On the differentiation of de Rham cohomology classes with respect to parameters ” J. Math. Kyoto Univ.,8, 199–213 (1968).

  26. 26.

    D. Mumford, “The topology of normal singularities of an algebraic surface and a criterion for simplicity Matematika (Periodic Collection of Translations of Foreign Articles),10, No. 6, 3–24 (1966).

  27. 27.

    Yu. I. Manin, “Circular fields and modular curves,” Uspekhi Mat. Nauk,26, No. 6, 7–71 (1971).

  28. 28.

    Yu. I. Manin, “Algebraic curves over fields with differentiation,” Izv. Akad. Nauk SSSR, Ser. Mat.,22, No. 6, 737–756 (1958).

  29. 29.

    Yu. I. Manin, “On ramified coverings of algebraic curves,” Izv. Akad. Nauk SSSR, Ser. Mat.,25, No.6, 789–796 (1961).

  30. 30.

    Yu. I. Manin, “Algebraic topology of algebraic varieties,” Uspekhi Mat. Nauk,20, No. 6, 3–12 (1965).

  31. 31.

    Yu. I. Manin, “Lectures on the K-functor in algebraic geometry.” Uspekhi Mat. Nauk,24, No. 5, 3–86 (1969).

  32. 32.

    Yu. I. Manin, Lectures on Algebraic Geometry. Part I: Affine Schemata [in Russian], Mosk. Univ., Moscow (1970), 132 pp.

  33. 33.

    Yu. I. Manin, “Correspondences, motifs, and monoidal transformations,” Mat. Sb.,77, No. 4, 475–507 (1968).

  34. 34.

    M. Miyanishi, “Homogeneous spaces and first cohomologies of group schemata,” Sagaku,22, No. 4, 252–263 (1970).

  35. 35.

    B. G. Moishezon, “On the protective imbeddings of algebraic varieties,” Dokl. Akad. Nauk SSSR,141, No. 3, 555–557 (1961).

  36. 36.

    B. G. Moishezon, “Remarks on projective imbeddings of algebraic varieties,” Dokl. Akad. Nauk SSSR.145, No. 5, 996–999 (1962).

  37. 37.

    B. G. Moishezon, “Protective criterion for complete abstract algebraic varieties,” Izv. Akad. Nauk SSSR, Ser. Mat.,28, No. 1, 179–224 (1964).

  38. 38.

    B. G. Moishezon, “Algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. 1,” Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 1, 174–238 (1969).

  39. 39.

    B. G. Moishezon, “Algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. 2,” Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 2, 323–367 (1969).

  40. 40.

    B. G. Moishezon, “Algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. 3,” Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 3, 506–548 (1969).

  41. 41.

    B. G. Moishezon, “On algebraic homology classes on algebraic varieties,” Izv. Akad. Nauk SSSR, Ser. Mat.,31, No. 2, 225–268 (1967).

  42. 42.

    S. P. Novikov, I. I. Pyatetskii-Shapiro, and I. R. Shafarevich, “Main directions in the development of algebraic topology and algebraic geometry,” Uspekhi Mat. Nauk,19, No. 6, 75–82 (1964).

  43. 43.

    A. N. Parshin, “On one generalization of the Jacobi variety,” Izv. Akad. Nauk, Ser. Mat.,30, No. 1, 175–182 (1966).

  44. 44.

    A. N. Parshin, “Arithmetic on algebraic varieties,” in: Algebra. Topology. Geometry. 1970 [in Russian], Itogi Nauki, VINITI Akad. Nauk SSSR, Moscow (1971), pp. 111–151.

  45. 45.

    I. I. Pyatetskii-Shapiro and I. R. Shafarevich, “Galois theory of transcendental extensions and uniformizations ” Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 3, 671–704 (1966).

  46. 46.

    J.-P. Serre, “Coherent algebraic sheaves,” in: Fiber Spaces and Their Applications [in Russian], IL, Moscow (1958), pp. 372–450.

  47. 47.

    J.-P. Serre, Groupes Algèbriques et Corps de Classes, Publ. Inst. Math. Univ. Nancago, VII., Hermann et Cie., Paris (1959), 202 pp.

  48. 48.

    J.-P. Serre, Cohomologie Galoisienne, Lectures Notes in Math.5, 3rd ed., Springer Verlag, Berlin-Heidelberg-New York (1965), 214 pp.

  49. 49.

    J.-P. Serre, Algèbre Locale. Multiplicités, Lecture Notes in Math.11, 2nd ed., Springer Verlag, Berlin-Heidelberg-New York (1965), 192 pp.

  50. 50.

    J. T. Tate, “Algebraic cohomology classes,” Summer Inst. Algebraic Geometry, Woods Hole, Mass. (1964).

  51. 51.

    J. T. Tate, “p-Divisible groups,” Proc. Conf. Local Fields (Driebergen, 1966), Springer Verlag, Berlin-Heidelberg-New York (1967), pp. 158–183.

  52. 52.

    J. T. Tate, “Residues of differentials on curves,” Ann. Sci.École Norm. Sup. (4)1, 149–159 (1968).

  53. 53.

    I. R. Shafarevich, “Principal homogeneous spaces defined over a field of functions,” Tr. Mat. In-ta Akad. Nauk SSSR,64, 316–346 (1961)

  54. 54.

    I. R. Shafarevich, “Surfaces with a sheaf of elliptic curves,” in: Algebraic Surfaces [in Russian], Tr. Mat. In-ta Akad. Nauk SSSR,75, 138–152 (1965).

  55. 55.

    I. R. Shafarevich, “Fundamentals of algebraic geometry,” Uspekhi Mat. Nauk,24, No. 6, 1–184 (1969).

  56. 56.

    A. M. Shermenev, “On the motif of a cubic hypersurface,” Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 3, 515–522 (1970).

  57. 57.

    A. M. Shermenev, “On the motif of an Abelian variety,” Uspekhi Mat. Nauk,26, No. 3, 215–216 (1971).

  58. 58.

    M. Schlessinger, “Functors of Artin Rings,” Trans. Amer. Math. Soc.,130, 208–222 (1968).

  59. 59.

    H. Yanigihara, “On immersions of algebraic schemes,” Sugaku,20, No. 1, 36–40 (1968).

  60. 60.

    P. Abellanas, “Algebraic correspondences,” Rend. Semin. Mat. Univ. e Politecn. Torino,25, No. 1, 75–82 (1965/66).

  61. 61.

    P. Abellanas, “Variedades algebraicas totales,” Actas Coloq. Internac. Geometria Algebraica, Madrid (1965), pp. 85–106.

  62. 62.

    P. Abellanas, “Sheaves on the total spectrum of a ring,” Rend. Mat. e Applic., 25, No. 1–2, 72–76 (1967).

  63. 63.

    S. Abhyankar, “Tame coverings and fundamental groups of algebraic varieties, 1. Branch loci with normalcrossings,” Amer. J. Math.,81, No. 1, 46–94 (1959).

  64. 64.

    S. Abhyankar, “Tame coverings and fundamental groups of algebraic varieties, 2. Branch curves with higher singularities,” Amer. J. Math.,82, No. 1, 120–178 (1968).

  65. 65.

    S. Abhyankar, “Tame coverings and fundamental groups of algebraic varieties, 3. Some other sets of conditions for the fundamental group to be Abelian,” Amer. J. Math.,82, No. 1, 179–190 (1960).

  66. 66.

    S. Abhyankar, “Tame coverings and fundamental groups of algebraic varieties, 4. Product theorems,” Amer. J. Math.,82, No. 2, 341–364 (1960).

  67. 67.

    S. Abhyankar, “Tame coverings and fundamental groups of algebraic varieties. 5. Three cuspidal plane quartics,” Amer. J. Math.,82, No. 2, 365–373 (1960).

  68. 68.

    S. Abhyankar, “Tame coverings and fundamental groups of algebraic varieties. 6. Plane curves of order at most four,” Amer. J. Math.,82, No. 2, 374–388 (1960).

  69. 69.

    S. Abhyankar, “Ramification theoretic methods in algebraic geometry,” Ann. Math. Studies, No. 43 (1959), 96 pp.

  70. 70.

    Algebraic Geometry. Pap. Bombay Colloq., 1968, London, Oxford Univ. Press, (1969), 426 pp.

  71. 71.

    A. Ahman and S. Kleiman, “IntroductiontoGrothendieck duality theory,” Lect. Notes Math., No. 146 (1970), 189 pp.

  72. 72.

    M. André, “Méthode simpliciale en algèbre homologique et algèbre commutative,” Lect. Notes in Math.,32, (1967), 122 pp.

  73. 73.

    A. Andreotti and E. Bombieri, “Sugli omeomorfismi delle varietà algebriche,” Ann. Scuoli Norm. Super. Pisa. Sci. Fis. et Mat.,23, No. 3, 431–450 (1969).

  74. 74.

    A. Andreotti and P. Salmon, “Anelli con unica decomposibilità in fattori primi ed un problema di intersezioni complete,” Monatsh. Math.,61, No. 2, 97–142 (1957).

  75. 75.

    S. Arima, “Differential forms of the second kind on algebraic varieties with certain imperfect ground fields,” Proc. Jap. Acad.,40, No. 9, 687–690 (1964).

  76. 76.

    S. Arima, “Differential forms of the first and second kind on modular algebraic varieties,” J. Math. Soc. Jap.,16, No. 2, 102–108 (1964).

  77. 77.

    M. Artin, “Some numerical criteria for contractability of curves on algebraic surfaces,” Amer. J. Math.,84, No. 3, 485–496 (1962).

  78. 78.

    M. Artin, “Grothendieck topologies,” Lectures Notes Harvard Univ., 1962, mimeographed notes.

  79. 79.

    M. Artin, “Étale cohomology of schemes,” Lect. Notes. Amer. Math. Soc. and Summer Inst. Algebr. Geometry, Woods Hole, Mass., (1964), pp. 1–9.

  80. 80.

    M. Artin, “On algebraic extensions of local rings,” Simpos. Internaz. Geometria Algebrica, Rome, 1965, Rome (1967), pp. 33–37.

  81. 31.

    M. Artin, “Etale coverings of schemes over Hensel rings,” Amer. J. Math.,88, No. 4, 915–934 (1966).

  82. 82.

    M. Artin, “Lifting of two-dimensional singularities to characteristic zero,” Amer. J. Math.,88, No. 4, 747–762 (1966).

  83. 83.

    M. Artin, “The etale topology of schems,” Proc. Internat. Congr. Mathematicians Moscow, 1966 [in Russian], Izd. “Mir,” Moscow (1968), pp. 44–56.

  84. 84.

    M. Artin, “The implicit function theorem in algebraic geometry,” Algebr. Geom. London1969, 14–34.

  85. 85.

    M. Artin, “Algebraic approximation of structures over complete local rings,” Publs. Math. Inst. Hautes Études Scient.,36, 23–58 (1969).

  86. 86.

    M. Artin, “Algebraization of formal moduli. I. Global analysis,” in: Collection of Mathematical Papers in Honor of K. Kodaira, Univ. of Tokyo Press, Tokyo (1970).

  87. 87.

    M. Artin, “Algebraization of formal moduli. II: Existence of modifications,” Ann. Math.,91, No. 1, 88–135 (1970).

  88. 88.

    M. Artin and B. Mazur, “Homotopy of varieties in the etale topology,” Proc. Conf. Local Fields, Driebergen, 1966, Berlin-Heidelberg-New York (1967), pp. 1–15.

  89. 89.

    M. Artin and B. Mazur, “Etale homotopy,” Lect. Notes Math.,100 (1969), 169 pp.

  90. 90.

    Y. Asaeda, “Absolute simplicity of subvarieties and their modules of differentials,” J. Fac. Sci. Univ. Tokyo. Sec. I,13, No. 2, 125–128 (1966).

  91. 91.

    M. Atiyah and W. Hodge, “Integrals of the second kind on an algebraic variety,” Ann. Math.,62, No. 1, 56–91 (1955).

  92. 92.

    B. Auslander, “The Brauer group of a ringed space,” J. Algebra,4, No. 2, 220–273 (1966).

  93. 93.

    M. Auslander, “On the purity of the branch locus,” Amer. J. Math.,84, No. 1, 116–125 (1962).

  94. 94.

    M. Auslander and D. Buchsbaum, “Homological dimension in local rings,” Trans. Amer. Math. Soc.,85, No. 2, 390–405 (1957).

  95. 95.

    M. Auslander and O. Goldman, “The Brauer group of a commutative ring,” Trans. Amer. Math. Soc,97, No. 3, 367–409 (1960).

  96. 96.

    J. Ax, “Injective endomorphisms of varieties and schemes,” Pacif. J. Math.,31, No. 1, 1–7 (1969).

  97. 97.

    J. Ax, “The elementary theory of finite fields,” Ann. Math.,88, No. 2, 239–271 (1968).

  98. 98.

    L. Bădescu and M. Moroianu, “Caraeterizarea morfismelor unei scheme in proj S si aplicatii la fascicule ample,” Studii si cercetari Mat. Acad. RSR,21, No. 10, 1149–1463 (1969).

  99. 99.

    L. Bădescu and M. Moroianu, “Sur une classe de morphismes de préschémas,” C. r. Acad. Sci.,268, No. 26, A1609-A1611 (1969).

  100. 100.

    L. Bădescu and M. Moroianu, “Quelques propriétés d'une classe de morphismes de préschémas,” C. r. Acad. Sci.,269, No. 6, A279-A280 (1969).

  101. 101.

    S. Baldassarri-Ghezzo, C.Margaglio, and T. Millevoi, “Introduzione ai metodi délla geometria algebrica,” Roma, Ed. Cremonese,(1967), 295 pp.

  102. 102.

    S. Baldassarri-Ghezzo, “Sullelocalizzazione di ideali e moduli di tipo finito privi di torsione, (Proprietà del chiuso di un fiscio algebrico coerente e lisciol),” Rend.Semin. Mat. Univ. Padova, 1967,39 205–218 (1968).

  103. 103.

    S. Baldassarri-Ghezzo, “Proprietà di fasci algebrici coerenti e lisci su varietà algebriche affini ad algebra fattoriale,” Rend. Semin. Mat. Univ. Padova, 1968,41, 12–30 (1969).

  104. 104.

    S. Baldassarri-Ghezzo, “Proprietà die fasci algebrici coerenti e lisci su varieta algebriche affini normali,” Rend. Semin. Mat. Univ. Padova, 1968,41, 31–42 (1969).

  105. 105.

    S. Baldassarri-Ghezzo, C. Margaglio, and T. Millevoi, “Considerazioni sulla conferenza tenuta da M. Baldassari a Torino nel 1961, in: “Osservazioni sulla struttura dei fasci lisci,” Rend. Semin. Mat. Univ. Padova,36, 277–284 (1966).

  106. 106.

    M. Baldassarri, “Osservazioni sulla struttura dei fasci lisci,” Atti convegno internaz. Geom. Algebrico. Torino, 1961, 49–56 (1962).

  107. 107.

    C. Bănică and O. Stănăsilă, “Some remarks on the finite morphisms,” Rev. Roum. Mat. Pures et Appl.,12, No. 10, 1425–1428 (1967).

  108. 108.

    W. Barth, “Transplanting cohomology classes in complex-projective space,” Amer. J. Math.,92, No. 4, 951–967 (1970).

  109. 109.

    C. Barton, “Contributions to the theory of ample vector bundles,” Doct. Diss. Columbia Univ., (1968), 48 pp. 'Diss. Abstrs. Int.,B32, No. 1, 423–424 (1971).

  110. 110.

    L. Bégueri, “Schéma d'automorphismes Application à l'étude d'extensions finies radicielles,” Bull. Sci. Math.,93, Nos. 3–4, 89–111 (1969).

  111. 111.

    R. Berger, R. Kiehl, E. Kunz, and H.-J. Nastold, “Differentialrechnung in der analytischen Geometrie,” Lect. Notes Math., No. 38 (1967), 134 pp.

  112. 112.

    R. Berndt, “Über arithmetische elliptische Differentiale 1,” Gattung. Abh. Math. Semin. Univ. Hamburg,35, Nos. 3–4, 252–253 (1971).

  113. 113.

    P. Berthelot, “Cohomologie p-cristalline des schémas: relevement de la caracteristique p à la caractéristique 0,” C. r. Acad. Sci.,269, No. 7, A297-A300 (1969).

  114. 114.

    P. Berthelot, “Cohomologie p-cristalline des schémas: variantes sur les notions de connexion et de stratification,” C. r. Acad. Sci.,269, No. 9, A357-A360 (1969).

  115. 115.

    P. Berthelot, “Cohomologie p-cristalline des schémas: comparaison avec la cohomologie de de Rham,” C. r. Acad. Sci.,269, No. 10, A397-A400 (1969).

  116. 116.

    P. Berthelot, “Cohomologie cristalline locale,” C. r. Acad. Sci.,272, A42-A45 (1971).

  117. 117.

    P. Berthelot, “Sur le morphisme trace en cohomologie cristalline,” C. r. Acad. Sci.,272, No. 2, A141-A144 (1971).

  118. 118.

    P. Berthelot, “La dualité de Poincaré en cohomologie cristalline,” C. r. Acad. Sci.,272, No. 3, A254-A257 (1971).

  119. 119.

    P. Berthelot, “Quelques relations entre les Ext cristallines et les Ext de complexes d'opérateurs différentiels d'ordre ≤1,” C. r. Acad. Sci.,272, No. 20, A1314-A1317 (1971).

  120. 120.

    P. Berthelot, “Classe de cohomologie associééà un cycle non singulier en cohomologie cristalline,” C. r. Acad. Sci.,272, No. 21, A1397-A1400 (1971).

  121. 121.

    P. Berthelot, “Une formule de razionalité pour la fonctionζ des schémas propres et lisses sur un corps fini,” C. r. Acad. Sci.,272, No. 24, A1574-A1577 (1971).

  122. 122.

    P. Berthelot and L. Illusie, “Classes de Chern en cohomologie cristalline,” C. r. Acad. Sci.,270, No. 25, A1695-A1697 (1970).

  123. 123.

    P. Berthelot and L. Illusie, “Classes de Chern en cohomologie cristalline,” C. r. Acad. Sci.,270, No. 26, A1750-A1752 (1970).

  124. 124.

    J.-E. Bertin, “Familles algébriques de classes de diviseurs de type linéaire commutatif,” C. r. Acad. Sci.,260, No. 2, A5169-A5172 (1965).

  125. 125.

    J.-E. Bertin, “Variete de Picard de type lineaire commutatif,” C. r. Acad. Sci.,262, No. 11, A624-A625 (1966).

  126. 126.

    J.-E. Bertin, “Quelques propriétés de la variété de Picard de type linéaire commutatif,” C. r. Acad. Sci.,264, No. 16, A736-A737 (1967).

  127. 127.

    J.-E. Bertin, “Variété de Picard de type linéaire commutatif,” Bull. Soc. Math. France,95, No. 11, (1967), 103 pp.

  128. 128.

    A. Bialynicki-Birula, “Remarks on relatively minimal models of fields of genus 0, I.” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. et Phys.,15, No. 5, 301–304 (1967).

  129. 129.

    A. Bialynicki-Biruia, “Rationally trivial homogeneous principal fibrations of schemes,” Invent. Math.,11, No. 3, 259–262 (1970).

  130. 130.

    S. Bloch and D. Gieseker, “The positivity of the Chern classes of an ample vector bundle,” Invent. Math.,12, No. 2, 112–117 (1971).

  131. 131.

    S. Bombieri, “Varietà algebriche omeomorfe,” Sympos. Math. 1st. Naz. Alta Mat. 1968, Vol. 2, London-New York (1969), pp. 353–356.

  132. 132.

    M. Bonardi, “Un'osservazione sopra l'idéale di una varietà algebrica non singulare,” Boll.Unione Mat. Ital.,22, No. 4, 451–455 (1967).

  133. 133.

    A. Borel, “Injective endomorphisms of algebraic varieties,” Arch. Math.,20, No. 5, 531–537 (1969).

  134. 134.

    M. Borelli, “Divisoral varieties,” Pacif. J. Math.,13, No. 2, 375–388 (1963).

  135. 135.

    M. Borelli, “Some results on ampleness and divisorial schemes,” Pacif. J. Math.,23, No. 2, 217–227 (1967).

  136. 136.

    M. Borelli, “Affine complements of diviros,” Pacif. J. Math.,31, No. 3, 595–607 (1969).

  137. 137.

    J.-F. Boutot, “Groupe de Picard local d'un anneau hensélien,” C. r. Acad. Sci.,272, No. 19, A1248-A1250 (1971).

  138. 138.

    L. Breene, “On a nontrivial higher extension of representable abelian sheaves,” Bull. Amer. Math. Soc.,75, No. 6, 1249–1253 (1969).

  139. 139.

    A. Brezuleanu, “Sur un critère de lissité formelle. Sur la descente de la lissité formelle,” C. r. Acad. Sci.,271, No. 6, A341-A344 (1970).

  140. 140.

    A. Brezuleanu, “Sur les morphismes formellement non ramifiés,” Rev. Roum. Math. Pures et Appl.,15, No. 4, 481–486 (1970).

  141. 141.

    A. Brezuleanu, “Sur un critère de 'lissité' formelle,” C. r. Acad. Sci.,269, No. 20, A944-A945 (1969).

  142. 142.

    A. Brezuleanu, “Note on formal smoothness and differentials,” Rev. Roum. Math. Pures et Appl.,13, No. 7, 949–960 (1968).

  143. 143.

    V. Brînzănescu, “Caracterizarea imersiilor unei scheme in Proj (S),” Stud. si cerc. Mat.,22, No. 8, 1155–1158 (1970).

  144. 144.

    W. de Bruin, “Une forme algébrique du théorème de Zariski pourπl,” C. r. Acad. Sci.,272, No. 12, A769-A771 (1971).

  145. 145.

    I. Bucur, “Sur la formule de Weil en cohomologie étale,” Rev. Roum. Math. Pures et Appl.,12, No. 9, 1145–1147 (1967).

  146. 146.

    L. Budach, “Erweiterungstheorie der Grellschen Präschemata,” Math. Nachr.,33, No. 6, 339–380 (1963).

  147. 147.

    L. Budach and K. Hasse, “Noethersche Integritätsbereiche mit offenem normalem Ort,” Math. Nachr., 39, Nos. 1–3, 135–160 (1969).

  148. 148.

    P. Cartier, “Questions de rationalité des diviseurs en géométrie algébrique,” Bull. Soc. Math. France,86, No. 3, 177–251 (1958).

  149. 149.

    P. Cartier, “Sur un théorème de Snapper,” Bull. Soc. Math. France,88, No. 3, 333–343 (1960).

  150. 150.

    P. Cartier, “Equivalence linéaire des ideaux de polynomes,” Semin. Bourbaki. Secrét. Math.,17, No. 2, 283-01–283-11 (1964–1965).

  151. 151.

    S. Chase, D. Harrison, and A. Rosenberg, “Galois theory and Galois cohomology of commutative rings,” Mem. Amer. Math. Soc., No. 52, 15–33 (1965).

  152. 152.

    S. Chase and A. Rosenberg, “Amitsur cohomology and the Brauer group,” Mem. Amer. Math. Soc., No. 52, 34–79 (1965).

  153. 153.

    S. Chase and M. Sweedler, Hopf algebras and Galois theory, Berlin, Springer, (1969), 133 pp.

  154. 154.

    C. Chevalley, Fondements de la géométrie algébrique, Paris, Secrétariat Math., (1958), 222 pp.

  155. 155.

    C. Chevalley, “Sur la théorie de la variété de Picard,” Amer. J. Math.,82, No. 3, 435–490 (1960).

  156. 156.

    W.-L. Chow, “On the protective embedding of homogeneous varieties,” Algebra Geometry and Topology, Princeton, N. J., Univ. Press (1957), pp. 122–128.

  157. 157.

    W.-L. Chow, “On the theorem of Bertini for local domains,” Proc. Nat. Acad. Sci., USA,44, No. 6, 580–584 (1958).

  158. 158.

    W.-L. Chow, “On the connectedness theorem in algebraic geometry,” Amer. J. Math.,81, No. 4, 1033–1074 (1959).

  159. 159.

    W.-L. Chow and J. Igusa, “Cohomology theory of varieties over rings,” Proc. Nat. Acad. Sci. USA,44, No. 12, 1244–1252 (1958).

  160. 160.

    H. Cohen, “Un faisceau qui ne peut pas être détordu universellement,” C. r. Acad. Sci.,272, No. 12, A799-A802 (1971).

  161. 161.

    G. Dantoni, “Ideali e varietá algebriche,” Univ. e Politecn,” Torino. Rend. Sem. Mat.,20, 149–156 (1960–1961).

  162. 162.

    P. Deligne, “Théorème de Lefschetz et critères de degenerescence de suites spectrales,” Publs. Math. Inst. Hautes Études Scient., No. 35, 259–278 (1968–1969).

  163. 163.

    P. Deligne, “Equations différentielles à points singuliers réguliers,” Lect. Notes. Math., No. 163, (1970), 133 pp.

  164. 164.

    P. Deligne, “Formes modulaires et représentationsl-adiques,” Lect. Notes. Math., No. 179, 139–172 (1971).

  165. 165.

    P. Deligne, “Variétés unirationnelles non rationnelles,” Semin. Bourbaki, 24 année (1971–1972), pp. 402/01–402/12.

  166. 166.

    P. Deligne, and D. Mumford, “The irreducibility of the space of curves of given genus,” Publs. Math. Inst. Hautes Études Scient., No. 36, 75–109 (1969).

  167. 167.

    M. Demazure, “Motifs des variétés algébriques,” Lect. Notes Math., No. 180, 19–38 (1971).

  168. 168.

    M. Demazure and P. Gabriel, “Groupes algébriques. 1. Géométrie algébrique-généralités, groupes commutatifs,” Massonet Cie., Paris, North-Holland Publ. Co., Amsterdam (1970), 700 pp.

  169. 169.

    M. Demazure and A. Grothendieck, “Schémas en groupes 1. Propriétés générales des schémas en groupes,” Lect. Notes Math., No. 151 (1970), 562 pp.

  170. 170.

    M. Demazure and A. Grothendieck, “Schémas en groupes 2. (SGA 3). Groupes de type multiplicatif, et structures des schémas en groupes généraux,” Lect. Notes Math., No. 152 (1970), 654 pp.

  171. 171.

    M. Demazure and A. Grothendieck, “Schémas en groupes 3. (SGA 3). Structure des schémas en groupes réductifs,” Lect. Notes Math., No. 153 (1970), 529 pp.

  172. 172.

    J. Dieudonné, “Group schemes and formal groups,” Actas Coloq. Internac. Geometria Algebraica Madrid, 1965, Madrid (1965), pp. 57–67.

  173. 173.

    J. Dieudonné, “Algebraic geometry,” Advan. Math.,3, No. 3, 233–321 (1969).

  174. 174.

    J. Dieudonné, “Fondements de la géometrie algébrique moderne,” Advan. Math.,3, No. 3, 322–413 (1969).

  175. 175.

    Dix Exposés sur la Cohomologie des Schémas (Advanced Stud. Pure Math., Vol. 3), North-Holland Publ. Co., Amsterdam, Masson et Cie., Paris (1968), 386 pp.

  176. 176.

    A. Doady, “Détermination d'un groupe de Galois,” C. r. Acad. Sci.,258, No. 22, A5305-A5308 (1964).

  177. 177.

    D. Dobbs, “Cech cohomological dimensions for commutative rings,” Lect. Notes Math., No. 147 (1970), 179 pp.

  178. 178.

    P. Dolbeault, “Une géneralization de la notion de diviseur,” Atti Convegno Internaz. Geom. Algebraico, Torino, 1961, Torino (1962).

  179. 179.

    I. V. Dolgachev (Dolgačev), “On the purity of the degeneration loci of families of curves,” Invent. Math.,8, No. 1, 34–54 (1969).

  180. 180.

    M. Duma, “Observatii asupra conexiuni spectrului primi,” Studii si Cercetari Mat. Acad. RSR,21, No. 1, 17–22 (1969).

  181. 181.

    B. Dwork, “On the zeta-function of a hyper surface,” Publs. Math. Inst. Hautes Études Scient., No. 12, 5–68 (1962).

  182. 182.

    G. Edmunds, “Coverings of node curves,” J. London Math. Soc.,1, No. 3, 473–479 (1969).

  183. 183.

    F. Elsein, “Residus en géométrie algébrique,” C. r. Acad. Sci.,272, No. 13, A878-A881 (1971).

  184. 184.

    P. Falb, “A note on coverings over imperfect ground fields,” Amer. J. Math.,88, No. 2, 447–453 (1966).

  185. 185.

    D. Ferrand, “Suite régulière et intersection complète,” C. r. Acad. Sci.,264, No. 10, A427-A428 (1967).

  186. 186.

    D. Ferrand, “Epimorphismes d'anneaux a source noetherienne et monomorphismes de schémas,” C. r. Acad. Sci.,266, No. 6, A319-A321 (1968).

  187. 187.

    J. Fogarty, “Truncated Hilbert functors,” J. Reine und Angew. Math.,234, 65–68 (1969).

  188. 188.

    J. Fogarty, “Algebraic families on algebraic surface,” Amer. J. Math.,90, No. 2, 511–521 (1968).

  189. 189.

    J. Fogarty, “Fixed point schemes,” Bull. Amer. Math. Soc.,77, No. 2, 203–204 (1971).

  190. 190.

    J. Fogarty, “Universal Weil divisors,” J. Reine und Angew. Math.250, 141–152 (1971).

  191. 191.

    W. Fulton, “The fundamental group of an algebraic curve,” Doct. Diss. Princeton, 1966, 71 pp. Dissert. Abstrs.,B27, No. 6 2025 (1966).

  192. 192.

    W. Fulton, “Hurwitz schemes and irreducibility of moduli of algebraic curves,” Ann. Math.,90, No. 3, 542–575 (1969).

  193. 193.

    P. Gabriel, “Des catégories abélienes,” Bull. Soc. Math. France,90, No. 3, 323–448 (1962).

  194. 194.

    P. Gabriel, “Le théoréme de Serre,” Sémin. C. Chevalley, Ecole norm. Supér., 1958–1959, 3-e année. Paris (1960), pp. 2/1–2/8.

  195. 195.

    G. Galbura, Corpuri di Functii Algebrice si Varietati Algebrice, Bacharest, (1961), 180 pp.

  196. 196.

    J. Gamst, “Quaternions généralisés,” C. r. Acad. Sci.,269, No. 14, A560-A562 (1969).

  197. 197.

    F. Gherardelli, “Un teorema di Lefschetz sulle intersezioni complete,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,28, No. 5, 610–614 (1960).

  198. 198.

    F. Gherardelli, “Le ipotesi del teorema di Severi-Lefschetz sulle varietá intersezione completa,” Atti Semin. Mat. Fis. Univ. Modena,13, 1–3 (1964).

  199. 199.

    J. Giraud, “Groupe de Picard, anneaux factoriels,” Semin. Bourbaki, Annee15, 248/01–248/13 (1962–1963).

  200. 200.

    J. Giraud, “Analysis situs,” Semin. Bourbaki. Année 15, 256/01–256/11 (1962–1963);Dix Exposes Cohomol. Schémas. Amsterdam-Paris (1968), pp. 1–12.

  201. 201.

    J. Giraud, “Méthode de la descente,” Bull. Soc. Math. France, Mem., No. 2 (1964), 150 pp.

  202. 202.

    J. Giraud, “Cohomologie non abélienne, prèliminaires,” C. r. Acad. Sci.,260, No. 9, A2392-A2394 (1965).

  203. 203.

    J. Giraud, “Cohomologie non abélienne,” C. r. Acad. Sci.,260, No. 10, A2666-A2668 (1965).

  204. 204.

    J. Giraud, “Cohomologie non abéliene,” (Grundlehren. Math. Wiss. Einzeldarstell., 179), Springer, Berlin e.a. (1971), 467 pp.

  205. 205.

    R. Goblot, “Catégories modulaires commutatives qui sont des catégories de faisceaux quasi cohérents sur un sché'ma,” C. r. Acad. Sci.,268, No. 2, A92-A95 (1969).

  206. 206.

    J. Goodman, “Affine open subsets of algebraic varieties and ample divisors,” Ann. Math.,89, 160–183 (1970).

  207. 207.

    J. Goodman and R. Hartshorne, “Schemes with finite dimensional cohomology groups,” Amer. J. Math.,91, 258–266 (1969).

  208. 208.

    R. Goren, “Characterization and algebraic deformations of projective space,” J. Math. Kyoto Univ.,8, No. 1, 41–47 (1968).

  209. 209.

    M. J. Greenberg, “Schemata over local rings,” Ann. Math.,73, No. 3, 624–648 (1961).

  210. 210.

    M. J. Greenberg, “Schemata over local rings. II,” Ann. Math.,78, No. 2, 256–266 (1963).

  211. 211.

    M. J. Greenberg, “Algebraic rings,” Trans. Amer. Math. Soc.,111, No. 3, 472–481 (1964).

  212. 212.

    M. J. Greenberg, “Perfect closures of rings and schemes,” Proc. Amer. Math. Soc.,16, 313–317 (1965).

  213. 213.

    M. J. Greenberg, “Rational points in Henselian discrete valuation rings,” Bull. Amer. Math. Soc.,72, No. 4, 713–714 (1966).

  214. 214.

    M. J. Greenberg, “Rational points in Henselian discrete valuation rings,” Publ. Math. Inst. Hautes Études Scient., No. 31, 563–568 (1966).

  215. 215.

    P. Griffiths, “Some transcendental methods in the study of algebraic cycles,” Lect. Notes Math., No. 185, 1–47 (1971).

  216. 216.

    M. Gröbner, “Moderne algebraische Geometrie,” Springer, Vienna (1949), 212 pp.

  217. 217.

    A. Grothendieck, “Sur les faisceaux algébriques et les faisceaux analytiques coherents,” Semin. Cartan. No. 2, 1–16 (1956–1957).

  218. 218.

    A. Grothendieck, “Théorémès de dualité pour les faisceaux algebriques coherent,” Semin. Bourbaki. Année 9, 1956–1957, 149/1–149/25 (1959).

  219. 219.

    A. Grothendieck, “Géométrie formelle et géométrie algébrique,” Semin. Bourbaki. Secrét. Math., Année 11, 1958–1959, 182/01–182/28 (1959).

  220. 220.

    A. Grothendieck, “Technique de descente et theorems d'existence en geometry algebrique. I. Generalités. Déscente par morphismes fidelement plats,” emin. Bourbaki. Secrét. Math., Annee 12, 1959–1960, 190/01–190/29 (1960).

  221. 221.

    A. Grothendieck, “Technique de déscente et théorèms d'existence en géometrie algébrique. II. Le théoréme d'existence en théorie formelles des modules,” Semin. Bourbaki. Secrét. Math., 1959–1960, 195/01–195/22 (1960).

  222. 222.

    A. Grothendieck, “Techniques de constructions et théorèms d'existence en géometrie algébrique. III. Préschemes quotients,” Semin. Bourbaki. Secrét. Math., 1960–1961, Année 13, Paris (1961), pp. 212/02–212/20.

  223. 223.

    A. Grothendieck, “Techniques de construction et théorèmes d'existence en géometrie algébrique. IV. Les schémas de Hilbert,” Semin. Bourbaki. Secrét. Math., 1960–1961, Année 13, Paris (1961), pp. 221/01–221/28.

  224. 224.

    A. Grothendieck, “Technique de déscente et théorèmes d'existence en géometrie algébrique. V. Les schémas de Picard. Théorèmes d'existence,” Semin. Bourbaki, Secrét. Math., 1961–1962, Année 14, Paris (1962), pp. 232/01–232/19.

  225. 225.

    A. Grothendieck, “Technique de déscente et théorèmes d'existence en géometrie algébrique. VI. Proprietes generales,” Semin. Bourbaki. Secrét Math., 1961–1962, Annee 14, Paris (1962), pp. 236/01–236/23.

  226. 226.

    A. Grothendieck, “Fondements de Géometrie algébrique,” Secrét. Math. Paris (1962).

  227. 227.

    A. Grothendieck, “Cohomologie locale des faisceaux cohérents etthéorèmes deLefschetz locaux et globaux (SGA 2),” (Advanced Stud. Pure Math., vol. 2), North Holland Publ. Co., Amsterdam; Masson et Cie., Paris (1968), 287 pp.

  228. 228.

    A. Grothendieck, “Formule de Lefschetz et rationalité de fonctions L,” Semin. Bourbaki. Secret. Math., 1964/65, Année 17, Paris (1966), pp. 279/01–279/15.

  229. 229.

    A. Grothendieck, “Le groupe de Brauer. 1,” Semin. Bourbaki. Secrét. Math., 1964–1965, Année 17, No. 3, 290/01–290/21 (1966).

  230. 230.

    A. Grolendieck, “Le groupe de Brauer. 2,” Semin. Bourbaki. Secrét. Math., 1965–1966, Année 18, 297/01–297/21; DixExposes Cohom. Schémas. Amsterdam-Paris (1968), pp. 67–87.

  231. 231.

    A. Grothendieck, “Le groupe de Brauer. 3. Exemples et complément” Dix Exposes Cohom. Schémas. Amsterdam-Paris (1968), pp. 88–188.

  232. 232.

    A. Grothendieck, “On the de Rham cohomology of algebraic varieties,” Publs. Math. Inst. Hautes Études Scient., No. 29, 351–359 (1966).

  233. 233.

    A. Grothendieck, “Un théorème sur les homomorphismes de schémas abéliens,” Invent. Math.,2, No. 1, 59–78 (1966).

  234. 234.

    A. Grothendieck, “Local cohomology,” Lect. Notes. Math., No. 41 (1967), 106 pp.

  235. 235.

    A. Grothendieck, “Catégories cofibrées additives et complexe cotangent relatif,” Lect. Notes Math., No. 79 (1968), 167 pp.

  236. 236.

    A. Grothendieck, “Classes de Chern et representations linéaires des groupes discrets,” Dix Exposes Cohom. Schémas, Amsterdam-Paris (1968), pp. 215–305.

  237. 237.

    A. Grothendieck, “Crystals and the de Rham cohomology of schemes,” Dix Exsposes Cohom. Schémas. Amsterdam-Paris (1968), pp. 306–358.

  238. 238.

    A. Grothendieck, “Standard conjectures on algebraic cycles,” Algebr. Geom., London (1969), pp. 193–199.

  239. 239.

    A. Grothendieck, “Representations lineaires et compactification profinie des groupes discrets,” Manuscr. Math.,2, No. 4, 375–396 (1970).

  240. 240.

    A. Grothendieck and J. Dieudonné, “Eléments de géometrie algébrique. I. Le langage des schémas,” Publs. Math. Inst. Hautes Études Scient., No. 4 (1960), 228 pp.

  241. 241.

    A. Grothendieck and J. Dieudonné, “Eléments de géometrie algébrique. 2. Étude globale elémentaire de quelques classes de morphismes,” Publs. Math. Inst. Hautés Études Scient., No. 8 (1961), 224 pp.

  242. 242.

    A. Grothendieck and J. Dieudonné, “Eléments de géometrie algébrique. 3. Étude cohomologique des faisceaux cohérents (Premiere partie),” Publs. Math. Inst. Hautes Études Scient., No. 11 (1961), 168 pp.

  243. 243.

    A. Grothendieck and J. Dieudonné, “Eléments de géometrie algébrique. 3. Étude cohomologique de faisceaux cohérents (Second partie),” Publs. Math. Inst. Hautes Études Scient, No. 17 (1962), 92 pp.

  244. 244.

    A. Grothendieck and J. Dieudonné, “Eléments de géometrie algébrique. 4. Étude locale des schémas et des morphismes de schémas (Première partie),” Publs. Math. Inst. Hautes Études Scient., No. 20 (1964), 260 pp.

  245. 245.

    A. Grothendieck and J. Dieudonné, “Eléments de géometrie algébrique. 4. Étude locale des schemas et des morphismes de schémas (Second partie),” Publs. Math. Inst. Hautes Études Scient., No. 24 (1964), 232 pp.

  246. 246.

    A. Grothendieck and J. Dieudonné, “Eléments de géometrie algébrique. 4. Étude locale des schémas et des morphismes des schémas (Troisième partie),” Publs. Math. Inst. Hautes Études Scient., No. 28 (1966), 256 pp.

  247. 247.

    A. Grothendieck and J. Dieudonné, “Eléents de géometrie algébrique. 4. Étude locale des schémas et des morphismes des schémas (Quatrième partie),” Publs. Math. Inst. Hautes Études. Scient., No. 32 (1967), 360 pp.

  248. 248.

    A. Grothendieck and J. Dieudonné, “Eléments de géometrie algébrique. I. Le langage de schémas (Grundlehren Math. Wiss. Einzeldarstell., 166),” Springer, Berlin e.a. (1970), 466 pp.

  249. 249.

    A. Grothendieck and J. P. Murre, “The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme,” Lect. Notes Math., No. 208 (1971), 133 pp.

  250. 250.

    A. Grothendieck and H. Seydl, “Platitude d'une adhérence schématique et lemme de Hironoka généralise,” Manuscr. Math.,5, No. 4, 323–341 (1971).

  251. 251.

    M. Haque, “Foncteur de préfaisceaux et foncteur faisceau associés à un anneau commutatifs,” C. r. Acad. Sci.,270, A1357-A1360 (1970).

  252. 252.

    M. Haque, “Remarques sur les schémas affines,” C. r. Acad. Sci.,270, A1649-A1652 (1970).

  253. 253.

    M. Haque, “Ouverts quasi-compacts des schémas affines,” C. r. Acad. Sci.,271, No. 3, A117-A119 (1970).

  254. 254.

    M. Haque, “Localisations et schémas affinés,” Publs. Dép. Math.,7, No. 2, 1–114 (1971).

  255. 255.

    M. Hakim, “Schémas relatifs,” Thésis. Doct. Sci. Math. Fac. Sci. Orsay, Univ. Paris (1967), 86 pp.

  256. 256.

    R. Hartshorne, “Complete intersections and connectedness,” Amer. J. Math.,84, No. 2, 497–508 (1962).

  257. 257.

    R. Hartshorne, “Connectedness of the Hilbert scheme,” Publs. Math. Inst. Hautes Études Scient., No. 29, 261–304 (1966).

  258. 258.

    R. Hartshorne, “Ample vector bundles,” Publs. Math. Inst. Hautes Études Scient., No. 29, 319–350 (1966).

  259. 259.

    R. Hartshorne, “Residues and duality,” Lect. Notes Math., No. 20 (1966), 413 pp.

  260. 260.

    R. Hartshorne, “Cohomological dimension of algebraic varieties,” Ann. Math.,88, No. 3, 403–450 (1968).

  261. 261.

    R. Hartshorne, “Ample subvarieties of algebraic varieties,” Lect. Notes Math., No. 156 (1970), 256 pp.

  262. 262.

    R. Hartshorne, “Affine duality and cofiniteness,” Invent. Math.,9, No. 2, 145–164 (1970).

  263. 263.

    R. Hartshorne, “Ample vector bundles on curves,” Nagoya Math., J.,43, No. 1, 73–89 (1971).

  264. 264.

    R. Hartshorne, “Cohomology of noncomplete algebraic varieties,” Compos. Math.,23, No. 3, 257–264 (1971).

  265. 265.

    M. Herrera and D. Liebermann, “Duality and the de Rham cohomology of infinitesimal neighbourhoods, Invent. Math.,13, Nos. 1–2, 97–124 (1971).

  266. 266.

    H. Hironaka, “A note on algebraic geometry over ground rings. The invariance of Hubert characteristic functions under specialisation process,” Ill. J. Math.,2, No. 3, 355–366 (1958).

  267. 267.

    H. Hironaka, “A generalized theorem of Krull-Seidenberg on parametrised algebras of finite type,” Amer. J. Math.,82, No. 4, 831–850 (1960).

  268. 268.

    H. Hironaka, “An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures,” Ann. Math.,75, No. 1, 190–208 (1962).

  269. 269.

    H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero. I,” Ann. Math.79, No. 1, 109–180 (1964).

  270. 270.

    H. Hironaka, “Onsome formal imbeddings,” Ill. J. Math.,12, No. 4, 587–602 (1968).

  271. 271.

    H. Hironaka, “Equivalence and deformations of isolated singularities,” Lee. Notes. Amer. Math. Soc. and Summer Inst. Algebr. Geometry Woods Hole, Mass. (1964), pp. 1–14.

  272. 272.

    H. Hironaka, “Formal line bundles along exceptional loci,” Algebr. Geometry, London (1969), pp. 201–218.

  273. 273.

    H. Hironaka and H. Matsumura, “Formal functions and formal embeddings,” J. Math. Soc. Jap.,20, 52–82 (1968).

  274. 274.

    J. Hocquemiller, “Sur certaines families de souspréschémas fermés d'un préscéme localement noethèrien,” C. r. Acad. Sci.,262, No. 1, A1-A3 (1966).

  275. 275.

    K. Hoechsmann, “Subaffine schemes,” Can. Math. Bull.,12, No. 2, 179–181 (1969).

  276. 276.

    H. Holmann, “Komplexe Raume mit komplexen Transformationsgruppen,” Math. Ann.,150, No. 4, 327–360 (1963).

  277. 277.

    A. Holme, “Some formal embeddings and projection theorems,” Doct. Diss. Columbia Univ., (1968), 78 pp. Dissert. Abstrs.,B29, No. 6, 2115 (1968).

  278. 278.

    A. Holme, “Formal embeddings and projection theorems,” Amer. J. Math.,93, No. 2, 527–571 (1971).

  279. 279.

    J. Hornell, “Complete intersections on algebraic variety,” Doct. Diss. Berkeley Univ., (1967), 90 pp. Dissert. Abstracts.,B28, 2939 (1968).

  280. 280.

    G. Horrocks, “A Hilbert function for stacks on Grassman varieties,” Proc. London Math. Soc.,9, No. 1, 51–53 (1959).

  281. 281.

    G. Horrocks, “Fixed point schemes of additive group actions,” Topology,8, No. 3, 233–242 (1969).

  282. 282.

    G. Horrocks, “Sheaves on projective space invariant under the unitriangular group,” Invent. Math.,10, No. 2, 108–118 (1970).

  283. 283.

    W. Hoyt, “On the Chow bunches for different projeetive embeddings of a complete variety,” Amer. J. Math.,88, No. 2, 273–278 (1966).

  284. 284.

    W. Hoyt, “Embeddings of Picard varieties,” Proc. Amer. Math. Soc.,15, 26–31 (1964).

  285. 285.

    F. Huikeshoven, “Multiple algebraic curves,” Moduli Problems. Amsterdam, 1971.

  286. 286.

    J. Igusa, “On some problems in abstract algebraic geometry,” Proc. Nat. Acad. Sci. USA,41, No. 11, 964–967 (1955).

  287. 287.

    J. Igusa, “A fundamental inequality in the theory of Picard varieties,” Proc. Nat. Acad. Sci. USA,41, No. 11, 317–320 (1955).

  288. 288.

    J. Igusa, “Fibre systems of Jacobian varieties. I,” Amer. J. Math.,78, No. 1, 171–199 (1956).

  289. 289.

    J. Igusa, “Betti and Picard numbers of abstract algebraic surfaces,” Proc. Nat. Acad. Sci. USA,46, No. 5, 724–726 (1960).

  290. 290.

    L. Illusie, “Complexe cotangent d'un faisceaux d'algèbres,” C. r. Acad. Sci.,268, No. 5, A278-A281 (1969).

  291. 291.

    L. Illusie, “Complexe cotangent d'un faisceaux d'algèbres,” C. r. Acad. Sci.,268, No. 6, A323-A326 (1969).

  292. 292.

    L. Illusie, “Complexe cotangent et deformations. I,” Lect. Notes Math., No. 239 (1971).

  293. 293.

    M. Ishida, “On Galois coverings of algebraic varieties and Albanese varieties attached to them,” J. Fac. Sci. Univ. Tokyo. Sec. I,8, No. 3, 577–604 (1960).

  294. 294.

    M. Ishida, “On coverings of algebraic varieties,” J. Math. Soc. Jap.,13, No. 3, 211–219 (1961).

  295. 295.

    B. Iversen, “Linear determinants with applications to the Picard scheme of a family of algebraic curves,” Lect. Notes Math., No. 174 (1970), 69 pp.

  296. 296.

    B. Iversen, “Critical points of an algebraic function,” Invent. Math.,12, No. 2, 210–224 (1971).

  297. 297.

    W. Jenner, Rudiments of Algebraic Geometry, Oxford Press, New York (1963).

  298. 298.

    C. Jepsen, “Some numerical results on divisorial schemes,” Doct. Diss. Indiana Univ., 1967, 47 pp. Dissert. Abstrs.,B28, 2520–2521 (1967).

  299. 299.

    E. Kähler, “Geometria aritmetica,” Ann. Mat. Pura Appl.,45 (1958), 399 pp.

  300. 300.

    N. Katz, “On the intersection matrix of a hyper surface,” Ann. Sci. École Norm. Supér.,2, No. 4, 583–598, 1969 (1970).

  301. 301.

    N. Katz, “On the differential equations satisfied by period matrices,” Publs. Math. Inst. Hautes Études Scient., No. 35, 223–258, 1968 (1969).

  302. 302.

    N. Katz, “Nilpotent connections and the monodromy theorem. Application of a result of Turritin,” Publs. Math. Inst. Hautes Études Scient., No. 34, 175–231 (1970).

  303. 303.

    K. Kendig, “Algebraic geometry over Dedekind domains,” Doct. Diss. Los Angeles, Univ. Calif. 1965, Dissert. Abstrs.,26, 3369–3370 (1965).

  304. 304.

    R. Kiehl and E. Kunz, “Vollstandige Durchschnitte und p-Basen,” Arch. Math.,16, Nos. 4–5, 348–362 (1965).

  305. 305.

    K. Kiyek, “Einige Bemerkungen zur Theorie der Divisoren,” Arch. Math.,21, No. 3, 268–277 (1970).

  306. 306.

    K. Kiyek, “Kohomologiegruppen und Konstantenreduktion in Funktionenkorpern,” Invent. Math.,9, No. 1, 99–120 (1970).

  307. 307.

    S. Kleiman, “A note on the Nakai-Moisezon test for ampleness of a divisor,” Amer. J. Math.,87, No. 1, 221–226 (1965).

  308. 308.

    S. Kleiman, “A numerical approach to proving projectivity,” Ann. Mat. Pura Appl.,71, 323–330 (1966).

  309. 309.

    S. Kleiman, “Toward a numerical theory of ampleness,” Ann. Math.,84, No. 1, 293–344 (1966).

  310. 310.

    S. Kleiman, “On the vanishing of Hn(X, F) for an n-dimensional variety,” Proc. Amer. Math. Soc.,18, No. 5, 940–944 (1967).

  311. 311.

    S. Kleiman, “Algebraic cycles and the Weil conjectures,” Dix Exposes Cohom. Schémas, Amsterdam-Paris (1968), pp. 359–386.

  312. 312.

    S. Kleiman, “Ample vector bundles on algebraic surfaces,” Proc. Amer. Math. Soc.,21, No. 3, 673–676 (1969).

  313. 313.

    M. Kneser, “Über die Darstellung algebraischer Raumkurven als Durchschnite von Flachen,” Arch. Math.,11, No. 3, 157–158 (1960).

  314. 314.

    D. Knutson, “Algebraic spaces,” Lect. Notes Math., No. 203 (1971), 261 pp.

  315. 315.

    T. Kodama, “Residuenfreie Differentiale und der Cartier-Operator algebraischer Funktionenkorper,” Arch. Math.,22, No. 3, 271–274 (1971).

  316. 316.

    H. Kramer, “Eine Bemerkung zur einer Vermutung von Lipman,” Arch. Math.,20, No. 1, 30–35 (1969).

  317. 317.

    W.-E. Kuan, “The hyperplane section through a normal point of an algebraic variety,” Doct. Diss. Berkeley, Univ. Calif., Dissert. Abstrs.,B27, No. 8, 2782 (1967).

  318. 318.

    W.-E. Kuan, “On the hyperplane section through two given points of an algebraic variety,” Can. J. Math.,22, No. 1, 128–133 (1970).

  319. 319.

    W.-E. Kuan, “A note on a generic hyperplane section of an algebraic variety,” Can. J. Math.,22, No. 5, 1047–1054 (1970).

  320. 320.

    K. Kubota, “Ample sheaves,” J. Fac. Sci. Univ. Tokyo,17, No. 3, 421–430 (1970).

  321. 321.

    N. Kuhlmann, “Zur Theorie der Modifikationen algebraischer Varietatan (birationale Transformationen),” Sehr. Math. Inst. Univ. Munster No. 14 (1959), 49 pp.

  322. 322.

    E. Kunz, “Differentialformen inseparabler algebraischer Funktionenkorper,” Math., Z.,76, No. 1, 56–74 (1961).

  323. 323.

    E. Kunz, Einige Anwendungen des Cartier-Operators,” Arch. Math.,13, Nos. 4–5, 349–356 (1962).

  324. 324.

    E. Kunz, “Über die kanonische Klasse eines vollstandigen Modells eines algebraischen Funktionen-korpers,” J. Reine Angew. Math.,209, No. 1, 17–28 (1962).

  325. 325.

    E. Kunz, “Vollständige Durchschnitte und Differenten,” Arch. Math.,19, No. 1, 47–58 (1968).

  326. 326.

    E. Kunz, “Remark on the purity of the branch locus,” Proc. Amer. Math. Soc.,20, No. 2, 378–380 (1969).

  327. 327.

    M. Kuranishi, “On the locally complete families of complex analytic structures,” Ann. Math.,75, No. 3, 536–577 (1962).

  328. 328.

    H. Kurke, “Einige Eigenschaften von quasiendlichen Morphismen von Praschemata,” Monatsber. Dtsch. Akad. Wiss. Berlin,9, Nos. 4–5, 248–257 (1967).

  329. 329.

    H. Kurke, “Über quasiendliche Morphismen von Preschemata,” Monatsber. Dtsch. Akad. Wiss. Berlin,10, No. 6, 389–393 (1968).

  330. 330.

    H. Kurke and W. Vogel, “Gefilterte Moduln und ihre Anwendungen in der algebraische Geometrie,” Publs. Math.,16, No. 1, 43–49 (1969).

  331. 331.

    S. Lang, Introduction to Algebraic Geometry, Interscience Publ., N. Y. (1958).

  332. 332.

    S. Lang and J.-P. Serre, “Sur les revetements non ramifies des variéties algebriques,” Amer. J. Math.,79, 319–330 (1957).

  333. 333.

    M. Laplaza, “Nota sobre el haz estrucctural de un anillo,” Rev. Mat. Hisp.-Amer.,26, No. 4, 114–117 (1966).

  334. 334.

    A. Lascu, “The order of a rational function at a subvariety of an algebraic variety,” Atti Accad. Naz. Lincei. Rend. Cl. Fiz. Mat. Natur.,34, No. 4, 378–384 (1963).

  335. 335.

    D. Lazard, “Disconnexites des spectres d'anneaux et des préschémas,” Bull. Soc. Math. France,95, No. 1, 95–108 (1967).

  336. 336.

    J. Leray, “L'anneau spectral et l'anneau filtré d'homologie d'une espace localement compact et d'une application continue,” J. Math. Pures et Appl.,29, No. 1, 1–139 (1950).

  337. 337.

    A. H. M. Levelt, “Foncteurs exacts à gauche,” Invent. Math.,8, No. 2, 114–141 (1969).

  338. 338.

    A. H. M. Levelt, “Foncteurs exacts à gauche. Une rectification et une simplifications,” Invent. Math.,10, No. 1, 1–3 (1970).

  339. 339.

    A. H. M. Levelt, “Sur la prorepresentabilité de certains foncteurs en geometrie algébrique,” Multigraphed notes, Kath. Univ. Nijmegen, The Netherlands (1964).

  340. 340.

    S. Lichtenbaum, “Curves over discrete valuation rings,” Amer. J. Math.,90, No. 2, 380–405 (1968).

  341. 341.

    S. Lichtenbaum and M. Schlessinger, “The cotangent complex of a morphism” Trans. Amer. Math. Soc,128, No. 1, 41–70 (1967).

  342. 342.

    J. Lipman, “Free derivation modules on algebraic varieties,” Amer. J. Math.,87, No. 4, 874–898 (1965).

  343. 343.

    J. Lipman, “On the Jacobian ideal of the module of differentials,” Proc. Amer. Math. Soc.,21, No. 2, 422–426 (1969).

  344. 344.

    J. Lipman, “Rational singularities, with applications to algebraic surfaces and unique factorization,” Publ. Math. Inst. Hautes Études Scient., No. 36, 195–279 (1969).

  345. 345.

    S. Lubkin, “On a conjecture of Andre Weil,” Amer. J. Math.,89, 443–548 (1967).

  346. 346.

    S. Lubkin, “A p-adic proof of Weil's conjectures. I,” Ann. Math.,87, No. 1, 105–194 (1968).

  347. 347.

    S. Lubkin, “A p-adic proof of Weil's conjectures. 2,” Ann. Math.,87, No. 2, 195–255 (1968).

  348. 348.

    I. Macdonald, Algebraic geometry. Introduction to Schemes, Vol. 7, Benjamin, New York (1968), 113 pp.

  349. 349.

    R. Mallot, “Descomposiciones galoisianas de una varidad algebraica,” Acta Salmant. Ser. Scene,6, No. 1, 61–64 (1965).

  350. 350.

    Yu. I. Manin, “Moduli fuchsiani,” Ann. Scuola Norm. Super. Pisa, Sci. Fiz. et Mat.,19, No. 1, 113–126 (1965).

  351. 351.

    C. Margaglio, “Consoderazioni sulle somme dirette di fasci algebrici coerenti di rango uno,” Atti Accad. Naz. Lincei. Rend.,37, No. 1, 52–57 (1964).

  352. 352.

    C. Margaglio, “Una caratterizzazione di certi fasci algebrici coerenti ed una ulteriore applicazione della proprietà di estensione,” Rend. Semin. Mat. Univ. Padova,34, No. 2, 369–377 (1964).

  353. 353.

    C. Margaglio, “Sul prodotto tensoriale di fasci algebrici coerentie lisci,” Rend. Semin. Mat. Univ. Padova,34, No. 2, 378–389 (1964).

  354. 354.

    C. Margaglio, “Sopra un problema di immersione per certi fasci algebrici coerenti su ona varietà affine,” Rend. Semin. Mat. Univ. Padova,39, 400–411, 1967 (1968).

  355. 355.

    C. Margaglio, “Sulla torsione in un prodotto tensoriale di moduli senze torsione,” Rend. Semin. Mat. Univ. Padova,40, 325–346 (1968).

  356. 356.

    M. Martin, “Sur une caractérisation des ouverts affinnes d'un schéma affine,” C. r. Acad. Sci.,273, No. 1, A38-A40 (1971).

  357. 357.

    H. Matsumura, “Geometric structure of the cohomology rings in abstract algebraic geometry,” Mem. Coll. Sci. Univ. Kyoto, Ser. A. Math.,32, No. 1, 33–84 (1959).

  358. 358.

    H. Matsumura and F. Oort, “Representability of group functors and automorphisms of algebraic schems,” Invent. Math.,4, No. 1, 1–25 (1967).

  359. 359.

    T. Matsusaka, “On the algebraic construction of the Picard variety,” Jap. J. Math.,21, No. 2, 217–236 (1951).

  360. 360.

    T. Matsusaka, “Theory of Q-Varieties,” Vol. 8, Tokyo Publs. Math. Soc. Japan (1964), 158 pp.

  361. 361.

    A. Mattuck, “Picard bundles,” Ill. J. Math.,5, No. 4, 550–564 (1961).

  362. 362.

    A. Mattuck, “Complete ideals and monoidal transforms,” Proc. Amer. Math. Soc.,26, No. 4, 555–560 (1970).

  363. 363.

    B. Mazur, “Local flat duality,” Amer. J. Math.,92, No. 2, 343–361 (1970).

  364. 364.

    B. Mazur and L. Roberts, “Local Euler characteristics,” Invent. Math.,9, No. 3, 201–234 (1970).

  365. 365.

    W. Messing, “The crystals associated to Barsotti-Tate groups, with applications to abelian schemes,” Lect. Notes Math., No. 264 (1972), 190 pp.

  366. 366.

    J. Milne, “The Brauer group of a rational surface,” Invent. Math.,11, No. 4, 304–307 (1970).

  367. 367.

    M. Miyanishi, “On the pro-representability of a functor on the category of finite group schems,” J. Math. Kyoto Univ.,6, No. 1, 31–48 (1966).

  368. 368.

    M. Miyanishi, “On the cohomologies of commutative affine group schemes,” J. Math. Kyoto Univ.,8, No. 1, 1–39 (1968).

  369. 369.

    M. Miyanishi, “Quelques remarques sur la prémiere cohomologie d'un préschema affine en groups commutatifs,” Jap. J. Math.,38, No. 1, 51–60 (1969).

  370. 370.

    H. Mizuno, “Canonical cycles on algebraic varieties,” J. Fac. Sci. Univ. Tokyo, Sec. 1,11, No. 1, 1–28 (1964).

  371. 371.

    H. Mizuno, “Canonical cycles on algebraic varieties,” J. Fac. Sci. Univ. Tokyo, Sec. I,12, No. 2, 213–222 (1966).

  372. 372.

    P. Monsky, “Formai cohomology. 2. The cohomology sequence of a pair,” Ann. Math.,88, No. 1, 218–238 (1968).

  373. 373.

    P. Monsky, “Formal cohomology. 3. Fixed point formula,” Ann. Math.,93, No. 2, 315–343 (1971).

  374. 374.

    P. Monsky and G. Washnitzer, “The construction of formal cohomology sheaves,” Proc. Nat. Acad. Sci. USA,52, No. 6, 1511–1514 (1964).

  375. 375.

    P. Monsky and G. Washnitzer, “Formal cohomology. I,” Ann. Math.,88, No. 1, 181–217 (1968).

  376. 376.

    D. Mumford, “Pathologies of modular algebraic surfaces,” Amer. J. Math.,88, No. 2, 339–342 (1961).

  377. 377.

    D. Mumford, “The topology of normal singularities of an algebraic surface and a criterion for simplicity,” Publs. Math. Inst. Hautes Etudes Scient.,9, 5–22 (1961).

  378. 378.

    D. Mumford, “Further pathologies in algebraic geometry,” Amer. J. Math.,84, No. 3, 642–648 (1962).

  379. 379.

    D. Mumford, “Picard groups of modules problems,” Arithmet. Algebraic Geometry, Proc. Conf., Purdue Univ., 1963, New York (1965), pp. 33–81.

  380. 380.

    D. Mumford, Geometric invariant theory, (Ergebn. Math. Bd. 34). Berlin-Heidelberg-New York, Springer (1965), 146 pp.

  381. 381.

    D. Mumford, Lectures on Curves on an Algebraic Surface, (Ann. Math. Stud. No. 59). Princeton Univ. Press (1966), 200 pp.

  382. 382.

    D. Mumford, “Pathologies. 3,” Amer. J. Math.,89, No. 1, 94–104 (1967).

  383. 383.

    D. Mumford, “Bi-extensions of formal groups,” Algebr. Geom. London (1969), pp. 307–322.

  384. 384.

    D. Mumford, Introduction to Algebraic Geometry, Harvard Univ., 1966 (preprint).

  385. 385.

    D. Mumford, Abelian Varieties, Tata Inst. Fund. Research Studies Math. No. 5, Oxford Univ. Press, London (1970), 242 pp.

  386. 386.

    R. Munson, “On Zariski's main theorem,” Doct. Diss. Rutgers-State Univ., Dissert. Abstrs.,B29, No. 11 (1969), p. 4277.

  387. 387.

    J. P. Murre, “On Chow varieties of maximal, total, regular families of positive divisors,” Amer. J. Math.,83, No. 1, 99–110 (1961).

  388. 388.

    J. P. Murre, “On generalized Picard varieties,” Math. Ann.,145, No. 4, 334–353, 1961 (1962).

  389. 389.

    J. P. Murre, “On contravariant functors from the category of Abelian groups (with application to the Picard functor),” Publs. Math. Inst. Hautes Études Scient., No. 23, 581–619 (1964).

  390. 390.

    J. P. Murre, “Representation of unramified functor. Applications,” Sémin. Bourbaki Secrét. Math., 1964–1965, annee 17, No. 3, 249/01–249/19 (1966).

  391. 391.

    J. P. Murre, Introduction to Grothendieck's Theory of the Fundamental Group. Tata Institute of Fundamental Research, Bombay (1966).

  392. 392.

    M. Nagata, “A general theory of algebraic geometry over Dedekind domains. I,” Amer. J. Math.,78, No. 1, 78–116 (1956).

  393. 393.

    M. Nagata, “On the imnedding problem of abstract varieties in projective varieties,” Mem. Coll. Sci. Kyoto Univ.,A30, No. 1, 71–82 (1956).

  394. 394.

    M. Nagata, “On the imbeddings of abstract surfaces in projective varieties,” Mem. Coll. Sci. Kyoto Univ.A30, No. 3, 231–235 (1957).

  395. 395.

    M. Nagata, “Existence theorems for nonprojective complete algebraic varieties,” Ill. J. Math.,2, No. 4A, 490–498 (1958).

  396. 396.

    M. Nagata, “Remarks on a paper of Zariski on the purity of branch loci,” Proc. Nat. Acad. Sci. USA,44, No. 8, 796–797 (1958).

  397. 397.

    M. Nagata, “A general theory of algebraic geometry over Dedekind domains. 3. Absolutely irreducible models, simple spots,” Amer. J. Math.,80, No. 2, 382–420 (1959).

  398. 398.

    M. Nagata, “An example to a problem of Abhyankar,” Amer. J. Math.,81, No. 2, 501–502 (1959).

  399. 399.

    M. Nagata, “Imbedding of an abstract variety in a complete variety,” J. Math., Kyoto Univ.,2, No. 1, 1–10 (1962).

  400. 400.

    M. Nagata, “A generalization of the imbedding problem of an abstract variety in a complete variety,” J. Math., Kyoto Univ.,3, No. 1, 89–102 (1963).

  401. 401.

    M. Nagata, Local Rings, New York, Interscience (1962), 234 pp.

  402. 402.

    Y. Nakai, “Some results in the theory of the differential forms of the first kind on algebraic varities. 2.” Mem. Coll. Sci. Univ. Kyoto, Ser. A,31, No. 2, 87–93 (1958).

  403. 403.

    Y. Nakai, “Ramifications, differentials and difference on algebraic varieties of higher dimensions,” Mem. Coll. Sci. Univ. Kyoto, Ser. A,32, No. 2, 391–411 (1960).

  404. 404.

    Y. Nakai, “Non-degenerate divisors on an algebraic surface,” J. Sci. Hiroshima Univ., Ser. A,24, No. 1, 1–6 (1960).

  405. 405.

    Y. Nakai, “On the theory of differentials in commutative ring,” J. Math. Soc. Jap.,13, No. 1, 63–84 (1961).

  406. 406.

    Y. Nakai, “A criterion of an ample sheaf on a projective scheme,” Amer. J. Math.,85, No. 1, 14–26 (1963).

  407. 407.

    Y. Nakai, “On the theory of differentials on algebraic varieties,” J. Sci. Hiroshima Univ., Ser. A,27, No. 1, 7–34 (1963).

  408. 408.

    Y. Nakai, “Some fundamental lemmas on protective schemes,” Trans. Amer. Math. Soc.,109, No. 1, 296–302 (1963).

  409. 409.

    Y. Nakai, “Note on the theory of differential forms on algebraic varieties,” J. Sci. Hiroshima Univ., Ser. A,29, No. 1, 11–15 (1965).

  410. 410.

    Y. Namikawa, “An application of Serre-Grothendieck duality theorem to local cohomology,” Proc. Jap. Acad.,46, No. 6, 483–486 (1970).

  411. 411.

    H.-J. Nastold, “Zum Dualitatssatz in inseparablem Funktionenkorper der Dimension 1,” Math. Z.,76, No. 1, 75–84 (1961).

  412. 412.

    H.-J. Nastold, “Zur Cohomologietheorie in der algebraischen Geometry. I,” Math., Z.,77, No. 4, 359–390 (1961).

  413. 413.

    H.-J. Nastold, “Zur Cohomologietheorie In der algebraischen Geometry. 2. Serres Dualitatssatz und der Satz von Riemann-Roch für Flachen,” Math. Z.,78, No. 4, 375–405 (1962).

  414. 414.

    A. Néron, “Modéles minimaux des variétès abéliennes sur les corps locaux et globaux,” Publs. Math. Inst. Hautes Études Scient, No. 21 (1964), 128 pp.

  415. 415.

    T. Oda, “The first de Rahm cohomology group and Dieudonné modules,” Ann. Scient. École Norm. Sup.,2, No. 1, 63–135 (1969).

  416. 416.

    A. P. Ogg, “Cohomology of abelian varieties over function fields,” Ann. Math.,76, No. 1, 185–212 (1962).

  417. 417.

    F. Oort, Reducible and Multiple Algebraic Curves, Leiden (1961), 83 pp.

  418. 418.

    F. Oort, “A construction of generalized Jacobian varieties by group extensions,” Math. Ann.,147, No. 4, 277–286 (1962).

  419. 419.

    F. Oort, “Sur le schéma de Picard,” Bull. Soc. Math., France,90, No. 1, 1–14 (1962).

  420. 420.

    F. Oort, “A note on rationality of divisor classes on algebraic schemata (separable case),” Math. Ann.,149, No. 1, 67–70 (1962).

  421. 421.

    F. Oort, “Commutative group schemes,” Lect. Notes Math., No. 15 (1966), 133 pp.

  422. 422.

    F. Oort, “Algebraic group schemes in characteristic zero are reduced,” Invent. Math.,2, No. 1, 79–80 (1966).

  423. 423.

    F. Oort, “Hensel's lemma and rational points over local rings,” Sympos. Math., Vol. 3, Rome (1970), pp. 217–232.

  424. 424.

    F. Oort, “Finite group schemes, local moduli for abelian varieties and lifting problems,” Compos. Math.,23, No. 3, 256–296 (1971).

  425. 425.

    F. Oort and D. Mumford, “Deformations and liftings of finite commutative group schemes,” Invent. Math.,5, No. 4, 317–334 (1966).

  426. 426.

    B. Paz, “Correspondencias algebraicas fuertemente y debilmente irreducibles,” Rev. Mat. Hisp.-Amer.,28, No. 5, 141–183 (1968).

  427. 427.

    R. Pendleton, “Structure theorems for torsion free coherent sheaves over the Riemann manifold of a field,” Doct. Diss. Indiana Univ., 1964, 58 pp. Dissert. Abstrs.,25 (1965), p. 6661.

  428. 428.

    C. Peskine, “Une générlization du 'main theorem' de Zariski,” Bull. Sci. Math.,90, Nos. 3–4, 119–127 (1966).

  429. 429.

    C. Peskine and L. Szpiro, “Sur la topologie des sousschémas férmes d'un schéma localement noetherien definis comme support d'un faisceaux coherent localement de dimension projective finie,” C. r. Acad. Sci.,269, No. 1, A49-A51 (1969).

  430. 430.

    C. Peskine and L. Szpiro, “Théorèmes de finitude t de nullité en cohomologie des schémas,” C. r. Acad. Sci.,271, No. 20, A1000-A1002 (1970).

  431. 431.

    H. Popp, “Zur Reduktionstheorie algebraischer Funktionenkorper vom Transzendenzgrad 1: Existenz einer regularen Reduktion zu vorgegebenem Funktionenkorper als Restklassenkorper,” Arch. Math.,17, No. 6, 510–522 (1966).

  432. 432.

    H. Popp, “Über die Fundamentalgruppe einer punktierten Riemannschen Flachen bei Characteristic p>0,” Math., Z.,96, No. 2, 111–124 (1967).

  433. 433.

    H. Popp, “Über die Fundamentalgruppe 2-dimensionaler Schemata,” Sympos. Math., Vol. 3, Rome (1970), pp. 403–451.

  434. 434.

    H. Popp, “Ein Satz vom Lefschetzschen Typ über die Fundamentalgruppe quasi-projectiver Schemata,” Math., Z.,116, No. 2, 143–152 (1970).

  435. 435.

    H. Popp, “Fundamentalgruppen algebraischer Mannigfaltigkeiten,” Lect. Notes Math., No. 176 (1970), 156 pp.

  436. 436.

    D. Quillen, “On the (co-) homology of commutative rings,” Proc. Symp. Pura Math.,17, 65–87 (1970).

  437. 437.

    C. Ramanujam, “A note on automorphism groups of algebraic varieties,” Math. Ann.,156, No. 1, 25–33 (1964).

  438. 438.

    Michèle Raynaud, “Théorèmes de Lefschetz pour les faisceaux cohérents,” C. r. Acad. Sci.,270, No. 11, A710-A713 (1970).

  439. 439.

    Michèle Raynaud, “Théorèmes de Lefschetz en cohomologie étale des faisceaux en groupes non nécessairement commutatifs,” C. r. Acad. Sci.,270, No. 12, A773-A775 (1970).

  440. 440.

    Michèle Raynaud, “Proprète comomologique des faisceaux de groupes non commutatifs,” Lect. Notes Math., No. 224, 344–445 (1971).

  441. 441.

    Michèle Raynaud, “Profondeur et thébrèmes de Lefschetz en cohomologie étale,” Advanced Stud. Pure Math., Vol. 2, Amsterdam-Paris (1968), pp. 203–284.

  442. 442.

    Michèle Raynaud, “Géometrie algébrique et géometrie analytique,” Lect. Notes Math., No. 224, 311–343 (1971).

  443. 443.

    Michel Raynaud, “Caracteristique d'Euler-Poincare d'un faisceaux et cohomologie des variétés abéliennes,” Sémin Bourbaki. Secrét, 1964–1965, annee 17, No. 2, 286/01–286/19 (1966). Dix Exposes Cohom. Schemàs, Amsterdam-Paris (1968), pp. 12–30.

  444. 444.

    Michel Raynaud, “Modèles de Néron,” C. r. Acad. Sci.,262, No. 6, A345-A347 (1966).

  445. 445.

    Michel Raynaud, “Spécialisation du foncteur de Picard,” C. r. Acad. Sci.,264, No. 22, A941-A943 (1967).

  446. 446.

    Michel Raynaud, “Spécialisation du foncteur de Picard. 2. Critère numérique de répré'sentabilité,” C. r. Acad. Sci.,264, No. 23, A1001-A1004 (1967).

  447. 447.

    Michel Raynaud, “Spécialisation du foncteur de Picard,” Publs. Math. Inst. Hautes Études Scient., No. 38, 27–76 (1970).

  448. 448.

    Michel Raynaud, “Faisceaux amples sur les schemes en groupes et les espaces homogénes,” C. r. Acad. Sci.,262, No. 24, A1313-A1315 (1966).

  449. 449.

    Michel Raynaud, “Faisceaux amples sur les schémas en groupes et les espaces homogénes,” Lect. Notes Math., No. 119 (1968), 219 pp.

  450. 450.

    Michel Raynaud, “Sur le passage au quotient par un groupoide plat,” C. r. Acad. Sci.,265, No. 14, A384-A387 (1967).

  451. 451.

    Michel Raynaud, “Passage au quotient par une relation d'equivalence plate,” Proc. Conf. Local Fields, Driebergen, 1966, Berlin-Heidelberg-New York (1967), pp. 78–85.

  452. 452.

    Michel Raynaud, “Un critére d'effectivité de descente,” Sémin. P. Sameul, Année 1967–1968, 5/01–5/22, Secrét. Math., Paris.

  453. 453.

    Michel Raynaud, “Anneaux locaux henseliennes,” Lect. Notes Math., No. 169 (1970), 133 pp.

  454. 454.

    Michel Raynaud, “Travaux recents de M. Artin,” Lect. Notes Math., No. 179, 279–295 (1971).

  455. 455.

    Michel Raynaud and L. Gruson, “Critères de platitude et de projectivité,” Invent. Math.,13, Nos. 1–2, 1–89 (1971).

  456. 456.

    F. Rodeja, “Los ideales irrelevantes en la teoria de cohomologica de variedade algebraicas,” Rev. Mat. Hisp.-Amer.,24, No. 1, 11–15 (1964).

  457. 457.

    J. Sampson and G. Washnitzer, “Cohomology of monoidal transforms,” Ann. Math.,69, No. 2, 605–629 (1959).

  458. 458.

    J. Sampson and G. Washnitzer, “A Kunneth formula for coherent algebraic sheaves,” Ill. J. Math.,3, No. 3, 389–402 (1959).

  459. 459.

    P. Samuel, “Méthodes d'Algèbre Abstraite en Géométrie Algébrique, Springer, Berlin, 1955; 2nd edition, corrigée, XII (1967), 133 pp.

  460. 460.

    P. Samuel, “Elementos de geometria algébrica,” Notas Math., No. 18 (1959), 144 pp.

  461. 461.

    P. Samuel, “Sur l'image reciproque d'un diviseur,” J. Reine Angew. Math.,204, No. 1, 1–10 (1960).

  462. 462.

    P. Samuel, Le théorème de Hahn-Banach en geometrie algébrique. Atti di Torino Convegno (1961), pp. 75–82.

  463. 463.

    I. R. Shafarevich (Schafarewitsch), Lectures on minimal models and birational transformations of two dimensional schemes. Tata Institute of Fundamental Research, Bombay (1966), 175 pp.

  464. 464.

    W. Scharlau, Über die Brauer-Gruppe eines algebraischen Funktionenkorpers in einer Variablen,” J. Reine und Angew. Math.,239–240, No. 1, 1–6 (1969).

  465. 465.

    R. Schwarzenberger, “Jacobians and symmetric products,” Ill. J. Math.,7, No. 2, 257–268 (1963).

  466. 466.

    “Seminaire C. Chevalley de l'Ecole Normale supér,” Secrét, Math., Année 3, 1958–1958, Paris (1960).

  467. 467.

    “Seminaire de Géométrie Algébrique du Bois Marie 1960/61. (SGA3) Revetement étales et groupe fondamental,” Lect. Notes Math., No. 224 (1971), 447 pp.

  468. 468.

    J.-P. Serre, “Faisceaux algébriques coherents,” Ann. Math.,61, No. 2, 197–278 (1955).

  469. 469.

    J.-P. Serre, “Sur la cohomologie des variétés algébriques,” J. Math. Pure Appl.,36, No. 1, 1–16 (1957).

  470. 470.

    J.-P. Serre, “Espaces fibres algebriques,” Semin. C. Chevalley de L'Ec. Norm. Sup., Secrét. Math., annee 2, 1/01–1/37 (1958).

  471. 471.

    J.-P. Serre, “Sur la topologie des variétés algébriques en caracteristique P,” Symp. Internat. Topologia Algebr., Mexico (1958),pp. 24–53.

  472. 472.

    J.-P. Serre, “On the fundamental group of a unirational variety,” J. London Math. Soc,34, No. 4; 481–484 (1959).

  473. 473.

    J.-P. Serre, “Revêtements ramifiés du plan projectif,” Semin. Bourbaki. Secrét. Math., Année 12, (1959–1960), 204/01–204/07.

  474. 474.

    J.-P. Serre, “Groupes pro-algebriques,” Publ. Math. Inst. Math. Hautes Scient., No. 7 (1960) 67 pp.

  475. 475.

    J.-P. Serre, “Exemples de variétés projecttves en caracteristique p non relevable en caractérisque zéro,” Proc. Nat. Acad. Sci. USA,47, No. 1, 108–109 (1961).

  476. 476.

    J.-P. Serre, “Géométrie algébrique,” Proc. Internat. Congr. Math., Aug. 1962, Djursholm. Uppsala (1963).

  477. 477.

    J.-P. Serre, “Exemples de variétés projectives conjugées non homéomorphes” C. r. Acad. Sci.,258, No. 4, A4194-A4196 (1964).

  478. 478.

    J.-P. Serre, “Géométrie algébrique et géométrie analytique. (GAGA),” Ann. Inst. Fourier, 1955–1956,6, No. 1, 1–42 (1956).

  479. 479.

    J.-P. Serre, “Quelques propriétes des variétés abéliennes en caractéristique p,” Amer. J. Math.,80, No. 3, 715–739 (1953).

  480. 480.

    J.-P. Serre and J. Tate, “Good reduction of abelian varieties,” Ann. Math.,88, No. 2, 492–517 (1968).

  481. 481.

    C. Seshadri, “Variété de Picard d'une variété complète,” Ann. Mat. Pura Appl. (4),57, 117–142 (1962).

  482. 482.

    C. Seshadri, “Construction of the Picard variety of a complete nonnormal variety,” Atti Congr. Unione Mat. Ital. Tenuto Napoli 11–16 sett. 1959, Rome, Ed. Gremonese (1960), 421 pp.

  483. 483.

    C. Seshadri, “Universal property of the Picard variety of a complete variety,” Math. Ann.,158, No. 3, 293–296 (1965).

  484. 484.

    H. Seydi, “Anneaux henseliens et conditions de chaînes,” Bull. Soc. Math.,98, No. 1, 9–31 (1970).

  485. 485.

    R. Sharp, “The Cousin complex for a module over a commutative noetherian ring,” Math. Z.,112, No. 5, 340–356 (1969).

  486. 486.

    S. Shatz, “Cohomology of artinian group schemes over local fields,” Ann. Math.,79, No. 3, 411–449 (1964).

  487. 487.

    S. Shatz, “Grothendieck topologies over complete local rings,” Bull. Amer. Math. Soc.,72, No. 2, 303–306 (1966).

  488. 488.

    S. Shatz, “The cohomological dimension of certain Grothendieck topologies,” Ann. Math.,83, No. 3, 572–595 (1966).

  489. 489.

    S. Shatz, “The structure of the category of sheaves in the flat topology over certain local rings,” Amer. J. Math.,90, No. 4, 1346–1354 (1968).

  490. 490.

    S. Shatz, “Principal homogeneous spaces for finite group schemes,” Proc. Amer. Math. Soc.,22, No. 3, 678–680 (1969).

  491. 491.

    A. Sivaramakrishna, “Sur la réprésentabilité de certains foncteurs contravariants,” C. r. Acad. Sci.,266, No. 6, A345-A347 (1968).

  492. 492.

    E. Snapper, “Cohomology theory and algebraic correspondences,” Mem. Amer. Math. Soc., No. 33 (1959), 96 pp.

  493. 493.

    E. Snapper, “Multiples of divisors,” J. Math. Mech.,8, No. 6, 967–992 (1959).

  494. 494.

    E. Snapper, “Polynomials associated with divisors,” J. Math. Mech.,9, No. 1, 123–139 (1960).

  495. 495.

    E. Snapper, “Monotone behavior of cohomology groups under proper mappings,” Ill. J. Math.,5, No. 4, 666–680 (1961).

  496. 496.

    Y. Takeuchi, “A note on Galois covering,” Osaka J. Math.,6, No. 2, 321–327 (1969).

  497. 497.

    J. Tate and F. Oort, “Group schemes of prime order,” An. Ecole Norm. Supér.,3, No. 1, 1–21 (1970).

  498. 498.

    W. Vasconcelos, “A note on normality and the module of differentials,” Math. Z.,105, No. 4, 291–293 (1968).

  499. 499.

    J.-L. Verdier, “A duality theorem in the étale cohomology of schemes,” Lect. Notes Amer. Math. Soc. and Summer Inst. Algebr. Geometry, Woods Hole, Mass., 1964, S. l., s. a., 1–25; Proc. Conf. Local Fields, Driebergen, 1966, Berlin-Heidelberg-New York (1967), pp. 184–198.

  500. 500.

    J.-L. Verdier, “The Lefschetz fixed point formula in étale cohomology,” Proc. Conf. Local Fields, Driebergen, 1966, Berlin-Heidelberg-New York (1967), pp. 199–214.

  501. 501.

    J.-L. Verdier, “Des catégories dérivées des catégories abéliennes,” Thès. Doct. Sci. Math. Fac. Sci. Univ. Paris (1967), 18 pp.

  502. 502.

    J.-L. Verdier, “Base change for twisted inverse image of coherent sheaves,” Algebr. Geometry. London (1969), pp. 393–408.

  503. 503.

    U. Vetter, “Aussere Potenzen von Differentialmoduln reduzierter vollstandiger Durchschnitte,” Manuscr. Math.,2, No. 1, 67–75 (1970).

  504. 504.

    B. L. van der Waerden, “Zur algebraischen Geometrie. 20. Der Zusammenhangssatz und der Multiplizitatsbegridd,” Math. Z.,193, No. 1, 89–108 (1971).

  505. 505.

    W. Waterhouse, “Automorphisms schemes and forms of Witt Lie algebras,” J. Algebra.,17, No. 1, 34–40 (1971).

  506. 506.

    A. Weil, “The field of a definition of a variety,” Amer. J. Math.,78, 509–524 (1956).

  507. 507.

    A. Weil, Foundations of Algebraic Geometry, (Amer. Math. Soc. Colloq. Public. V. 29), N. Y., 1946 (2nd edition, 1962).

  508. 508.

    H. Yanagihara, “On the connectedness theorem on schemes over local domains,” J. Sci. Hiroshima Univ., Ser. A,29, 171–179 (1961).

  509. 509.

    H. Yanagihara, “Reduction of models over a discrete valuation ring,” J. Math. Kyoto Univ.,2, No. 2, 123–156 (1963).

  510. 510.

    H. Yanagihara, “Corrections and supplement to the paper ‘Reduction of models over a discrete valuation ring,’” J. Math. Kyoto Univ.,3, No. 3, 363–368 (1964).

  511. 511.

    H. Yanagihara, “Some remarks on algebraic rings,” J. Math. Kyoto Univ.,3, No. 1, 103–110 (1963).

  512. 512.

    A. Yoshioka, “Sur la reduction moduloD de certain ensembles algébriques,” Proc. Jap. Acad.,38, No. 9, 680–685 (1962).

  513. 513.

    O. Zariski, “Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields,” Mem. Amer. Math. Soc. (1951).

  514. 514.

    O. Zariski, “On the purity of the branch locus of algebraic functions,” Proc. Nat. Acad. Sci. USA,44, No. 8, 791–796 (1958).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Matematika (Algebra, Topologiya, Geometriya), Vol. 10, pp. 47–112, 1972.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dolgachev, I.V. Abstract algebraic geometry. J Math Sci 2, 264–303 (1974). https://doi.org/10.1007/BF01085605

Download citation

Keywords

  • Algebraic Geometry