Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Invariance principle for estimates of regression coefficients of a random field

  • 25 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    N. N. Leonenko and M. I. Yadrenko, “On the asymptotic normality of least-squares estimates of regression coefficients in homogeneous and isotropic random fields,” Kibernetika, No. 2, 108–112 (1977).

  2. 2.

    N. N. Leonenko, “On estimating linear regression coefficients of homogeneous random fields,” Ukr. Mat. Zh.,30, No. 6, 749–756 (1978).

  3. 3.

    N. N. Leonenko and M. I. Yadrenko, “On the invariance principle for homogeneous and isotropic random fields,” Theory Probab. Its Appl.,24, No. 1, 175–181 (1979).

  4. 4.

    N. N. Leonenko and M. I. Yadrenko, “On the invariance principle for certain classes of random fields,” Ukr. Mat. Zh.,31, 559–566 (1979).

  5. 5.

    P. S. Knopov, “On the question of estimating regression coefficients of random fields,” Kibernetika, No. 3, 112–115 (1965).

  6. 6.

    Yu. A. Davydov, “An invariance principle for stationary processes,” Theory Probab. Its Appl.,15, No. 3, 487–498 (1970).

  7. 7.

    Yu. A. Davydov, “On the convergence of distributions generated by stationary random processes,” Theory Probab. Its Appl.,13, No. 4, 691–696 (1968).

  8. 8.

    A. S. Kholevo, “The asymptotic normality of estimates of regression coefficients,” Theory Probab. Its Appl.,16, No. 4, 707–711 (1971).

  9. 9.

    K. Yoshichara, “Moment inequalities for mixing sequences,” Kodai Math. J.,18, No. 4, 316–328 (1979).

  10. 10.

    A. V. Bulinskii and I. G. Zhurbenko, “A central limit theorem for additive random functions,” Theory Probab. Its Appl.,21, No. 4, 687–697 (1976).

  11. 11.

    I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen (The Netherlands) (1971).

  12. 12.

    I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes, Vol. 1, Springer-Verlag, Berlin (1981).

Download references

Author information

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 33, No. 6, pp. 771–778, November–December, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leonenko, N.N. Invariance principle for estimates of regression coefficients of a random field. Ukr Math J 33, 580–586 (1981). https://doi.org/10.1007/BF01085433

Download citation

Keywords

  • Regression Coefficient
  • Random Field
  • Invariance Principle