Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Graph theory

  • 188 Accesses

  • 5 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    G. Avondo Bodino, Economic Applications of the Theory of Graphs, Gordon and Breach, New York (1962).

  2. 2.

    S. Ya. Agakishieva, “Graphs whose vertices are surrounded by simple chains or simple cycles,” Dokl. Akad. Nauk Azerb. SSR,26, No. 12, 7–10 (1970).

  3. 3.

    Z. V. Alferova and V. P. Ezzheva, Applications of Graph Theory in Economic Analyses [in Russian], Statistika, Moscow (1971), 150 pages.

  4. 4.

    E. F. Beckenbach (ed.), Applied Combinatorial Mathematics, Wiley, New York (1964).

  5. 5.

    F. Ya. Vetukhnovskii, “Coverings of a graph by a system of neighborhoods of its vertices,” in: Problems in Cybernetics [in Russian], No. 19, Nauka, Moscow (1967), pp. 47–74.

  6. 6.

    V. G. Vizing, “Estimating the chromatic class of a p-graph,” in: Discrete Analysis [in Russian], No. 3, Novosibirsk (1964), pp. 25–30.

  7. 7.

    V. G. Vizing, “Critical graphs with a given chromatic class,” in: Discrete Analysis [in Russian], No. 5, Novosibirsk (1965), pp. 9–17.

  8. 8.

    V. G. Vizing, “Estimating the outer stability number of a graph,” Dokl. Akad. Nauk SSSR,164, No. 4, 729–731 (1965).

  9. 9.

    V. G. Vizing, “Chromatic class of a multigraph,” Kibernetika, No. 3, 29–39 (1965).

  10. 10.

    V. G. Vizing, “Number of edges in a graph with a given radius,” Dokl. Akad. Nauk SSSR,173, No. 6, 1245–1246 (1967).

  11. 11.

    V. G. Vizing, “Reducibility of a series of graph-theoretic problems to a minimal-connectivity problem,” in: Computational Mathematics and Computational Technique [in Russian], No. 2, Kharkov (1971), pp. 52–55.

  12. 12.

    V. G. Vizing and M. K. Gol'dberg, “On the detour number of a strongly connected graph,” Kibernetika, No. 1, 79–82 (1969).

  13. 13.

    L. F. German, “On V. G. Vizing's hypothesis concerning the outer stability number of the Cartesian product of two graphs,” in: Proc. Sci. Conf. Prof.-Educational Staff of Kishinev Univ. on Progr. Sci. Res. 1970, Sec. Nat. and Experim. Sci. [in Russian], Kishinev (1970), pp. 27–28.

  14. 14.

    V. V. Glagolev and A. A. Evdokimov, “Minimum coloring of a particular infinite graph,” in: Discrete Analysis [in Russian], No. 17, Novosibirsk (1970), pp. 9–17.

  15. 15.

    M. K. Gol'dberg, “Applications of the condensation operation to strongly connected graphs,” Usp. Matem. Nauk,20, No. 5, 203–205 (1965).

  16. 16.

    M. K. Gol'dberg, “On the diameter of a strongly connected graph,” Dokl. Akad. Nauk SSSR,170, No. 4, 767–769 (1966).

  17. 17.

    I. Grossman and W. Magnus, Groups and Their Graphs, Random House, New York (1964).

  18. 18.

    G. A. Donets, “On the number of colorings of certain T-graphs (Part I),” in: Optimal Decision Theory, Seminar Proceedings [in Russian], No. 4, Kiev (1969), pp. 63–81.

  19. 19.

    G. A. Donets, “On the number of colorings of certain T-graphs (Part II),” in: Optimal Decision Theory, Seminar Proceedings [in Russian], No. 5, Kiev (1969), pp. 77–79.

  20. 20.

    G. A. Donets, “Lower bound for the number of vertices of planar critical graphs,” Kibernetika, No. 4, 76–85 (1971).

  21. 21.

    A. A. Evdokimov, “Maximum chain length in the unit n-dimensional cube,” Matem. Zametki,6, No. 3, 309–319 (1969).

  22. 22.

    K. A. Zaretskii, “On Husimi trees,” Matem. Zametki,9, No. 3, 253–262 (1971).

  23. 23.

    A. A. Zykov, “Graph theory,” in: Algebra and Topology 1962 (Progress in Science) [in Russian], VINITI AN SSSR, Moscow (1963), pp. 188–223.

  24. 24.

    A. A. Zykov, Theory of Finite Graphs [in Russian], Vol. 1, Nauka, Novosibirsk (1969), 543 pages.

  25. 25.

    A. S. Zykov, “A vector space associated with Hadwiger's conjecture,” Dokl. Akad. Nauk SSSR,187, No. 6, 1235–1238 (1969).

  26. 26.

    W. Imrick and É. Stotskii, “Optimum embeddings of metrics in graphs,” Dokl. Akad. Nauk SSSR,200, No. 2, 279–281 (1971).

  27. 27.

    Sh. M. Ismailov, Upper Bound on the Number of Arcs of a Non-2-Connected Digraph with a Specified Number of 2-Components and Radius (Deposited Abstract No. 3245-71), Inst. Kibernet. Akad. Nauk Azerb. SSR, Baku (1971), 7 pages.

  28. 28.

    Sh. M. Ismailov, “Number of arcs of a digraph of given radius with specified numbers of vertices and 2-components,” Dokl. Akad. Nauk Azerb. SSR,27, No. 2, 8–12 (1971).

  29. 29.

    A. A. Kalnin'sh, “Statistical estimate of the chromatic number for a class of graphs,” Latv. Matem. Ezhegodnik,7, 111–125 (1970).

  30. 30.

    A. A. Kalnin'sh, “Complexity estimation for the coloring of graphs on a Turing machine,” Probl. Peredachi Inform.,7, No. 4, 59–72 (1971).

  31. 31.

    A. V. Karzanov, “An economical algorithm for finding the 2-components of a graph,” in: Proc. Third Winter School on Mathematical Programming and Related Problems, 1970 [in Russian], No. 2, Moscow (1970), pp. 343–347.

  32. 32.

    V. P. Kozyrev, “On the representation of graphs by networks,” in: Problems in Cybernetics (Information Materials) [in Russian], Sov. Radio, Moscow (1972).

  33. 33.

    A. D. Korshunov, “On the diameter of graphs,” Dokl. Akad. Nauk SSSR,196, No. 5, 1013–1015 (1971).

  34. 34.

    M. I. Kratko, “On the degree of an information graph,” in: Computer Systems [in Russian], No. 34, Nauka, Novosibirsk (1969), pp. 64–70.

  35. 35.

    S. E. Markosyan, “Uniqueness criterion for a basis of arcs of finite directed graphs,” Izv. Akad. Nauk Arm. SSR, Matematika,2, No. 6, 399–403 (1967).

  36. 36.

    S. E. Markosyan, “Matrix criterion of uniqueness of a basis of arcs and the determination of a particular basis,” Dokl. Akad. Nauk Arm. SSR,46, No. 2, 60–66 (1968).

  37. 37.

    A. N. Melikhov, Directed Graphs and Finite Automata [in Russian], Nauka, Moscow (1971), 416 pages.

  38. 38.

    L. S. Mel'nikov, “Critical directed graphs with a given diameter,” in: Controllable Systems [in Russian], No. 7, Novosibirsk (1970), pp. 37–45.

  39. 39.

    R. G. Nigmatullin, “Matching of graphs,” Uch. Zap. Kazansk. Univ.,128, No. 2, 91–94 (1968).

  40. 40.

    R. G. Nigmatullin, “On the covering of a graph by edges,” in: Problems in Cybernetics [in Russian], No. 21, Nauka, Moscow (1969), pp. 241–248.

  41. 41.

    O. Ore, Graphs and Their Uses, Random House, New York (1963).

  42. 42.

    O. Ore, Theory of Graphs (AMS Colloquium Publ., Vol. 38), Amer. Math. Soc., Providence, R. I. (1962).

  43. 43.

    V. D. Podderyugin, “Algorithm for the determination of the edge-connectivity of a graph,” in: Aspects of Cybernetics (Information Materials) [in Russian], Sov. Radio, Moscow (1972).

  44. 44.

    L. P. Robichaud, M. Boisvert, and J. M. Robert, Signal Flow Graphs and Applications, Prentice-Hall (1962).

  45. 45.

    T. L. Saaty, “The number of intersections in complete graphs,” Tekh. Kibernet., No. 6, 151–154 (1971).

  46. 46.

    S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison-Wesley, Reading, Mass. (1961).

  47. 47.

    Kh. Urakov, “Bases of arcs of a directed graph,” in: Problems of Cybernetics and Computational Mathematics [in Russian], Fan, Tashkent (1968), pp. 103–109.

  48. 48.

    Kh. Urakov, “Bases of edges of a partially directed graph,” in: Problems of Cybernetics and Computational Mathematics [in Russian], No. 24, Fan, Tashkent (1969), pp. 114–122.

  49. 49.

    Kh. Urakov, “Conditional bases of arcs of a directed graph,” in: Problems of Cybernetics and Computational Mathematics [in Russian], No. 25, Fan, Tashkent (1969), pp. 101–108.

  50. 50.

    I. A. Faradzhev, “Algorithm for the identification of the 2-components of a directed graph,” in: Proc. Third Winter School on Mathematical Programming and Related Problems, 1970 [in Russian], No. 3, Moscow (1970), pp. 650–654.

  51. 51.

    L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press (N. J.) (1962).

  52. 52.

    V. Chvátal, “Planar graphs with specified degrees of vertices,” in: Abstracts of Sci. Conf. Young Scientists of Moscow State Univ. [in Russian], Moscow Univ., Moscow (1968), p. 22.

  53. 53.

    L. N. Shevrin and N. D. Filippov, “Partially ordered sets and their comparability graphs,” Sibirsk. Matem. Za.,11, No. 3, 648–667 (1970).

  54. 54.

    N. Z. Shor and G. A. Donets, “Algebraic approach to the study of the four-color problem,” in: Optimum Decision Theory, Seminar [in Russian], No. 3, Kiev (1967), pp. 57–72.

  55. 55.

    N. Z. Shor and L. N. Zemlyanukhina, “Certain graph-theoretic combinatorial problems associated with a maximum internally stable set,” in: Mathematical Methods of System Research and Optimization [in Russian], No. 5, Kiev (1970), pp. 13–24.

  56. 56.

    M. Aigner, “Onthe linegraph of a directed graph,” Math. Z.,102, No. 1, 56–61 (1967).

  57. 57.

    M. Aigner and G. Prins, “Uniquely partially orderable graphs,” J. London Math. Soc.,3, No. 2, 260–266 (1971).

  58. 58.

    Y. Alavi and M. Behzad, “Complementary graphs and edge chromatic numbers,” SIAM J. Appl. Math.,20, No. 2, 161–163 (1971).

  59. 59.

    B. R. Alspach, A Class of Tournaments (doctoral dissertation), Univ. Calif. Santa Barbara (1966), 63 pages; Diss. Abstr.,B28, No. 3, 983–984 (1967).

  60. 60.

    L. R. Alvarez, “Undirected graphs realizable as graphs of modular lattices,” Canad. J. Math.,17, No. 6, 923–932 (1965).

  61. 61.

    S. S. Anderson, Graph Theory and Finite Combinatorics, Markham, Chicago (1970), viii +180 pages; Publishers' Weekly,198, No. 19, 64–65 (1970).

  62. 62.

    D. Barnette, E. Jocovič, and M. Trenkler, “Toroidal maps with prescribed types of vertices and faces,” Mathematica (G. B.),18, No. 1, 82–90 (1971).

  63. 63.

    A. Battersby, Network Analysis for Planning and Scheduling Transportation, Macmillan, New York (1964).

  64. 64.

    M. Behzad, “A criterion for the planarity of the total graph of a graph,” Proc. Cambridge Phil. Soc.,63, No. 3, 679–681 (1967).

  65. 65.

    M. Behzad, “The total chromatic number of a graph: a survey,” in: Combinatorial Mathematics and Its Applications, London-New York (1971), pp. 1–8.

  66. 66.

    M. Behzad and G. Chartrand, “Total graphs and traversability,” Proc. Edinburgh Math. Soc.,15, No. 2, 117–120 (1966).

  67. 67.

    M. Behzad and H. Radjavi, “Structure of regular total graphs,” J. London Math. Soc.,44, No. 3, 433–436 (1969).

  68. 68.

    L. W. Beineke, “The decomposition of complete graphs into planar subgraphs,” in: Graph Theory and Theoretical Physics, Academic Press, New York-London (1967), pp. 139–153.

  69. 69.

    L. W. Beineke, “A survey of packings and coverings of graphs,” Lect. Notes Math.,110, 45–53 (1969).

  70. 70.

    L. W. Beineke and G. Chartrand, “The coarseness of a graph,” Compos. Math.,19, No. 4, 290–298 (1968).

  71. 71.

    L. W. Beineke and F. Harary, “The genus of the n-cube,” Canad. J. Math.,17, No. 3, 494–496 (1965).

  72. 72.

    L. W. Beineke and F. Harary, “The maximum number of strongly connected subtournaments,” Canad. Math. Bull.,8, No. 4, 491–498 (1965).

  73. 73.

    Beiträge zur Graphentheorie, Internat. Kolloq., Manebach (DDR), May 9–12, 1967, Teubner, Leipzig (1968), 394 pages.

  74. 74.

    R. Bellman, K. L. Cooke, and J. A. Lockett, Algorithms, Graphs, and Computers, Academic Press, New York-London (1970), 246 pages.

  75. 75.

    C. Berge, Graphes et Hypergraphes, Dunod, Paris (1970), xviii + 502 pages.

  76. 76.

    C. Berge and A. Ghouila-Houri, Programming, Games, and Transportation Networks, Methuen, London (1965).

  77. 77.

    J. C. Bermond, “Graphes orientés fortement k-connexes et graphes k-arc-hamiltoniens,” Compt. Rend.,271, No. 3, A141-A144 (1970).

  78. 78.

    Bibliographie. Beitr. Graphentheorie, Internat. Kolloq., Manebach, 1967, Leipzig (1968), pp. 233–394.

  79. 79.

    J. Blažek and M. Koman, “Průseĉíkové ĉíslo pùlných k-chromatických grafú,” in: Mat. Geometrie a Teorie Grafú, Prague (1970), pp. 69–84.

  80. 80.

    J. C. Boland, “Embedding of graphs in orientable surfaces,” in: Theory of Graphs, Budapest (1968), p. 27.

  81. 81.

    J. A. Bondy, “A note on the diameter of a graph,” Canad. Math. Bull,11, No. 3, 499–501 (1968).

  82. 82.

    J. A. Bondy, “Bounds for the chromatic number of a graph,” J. Comb. Theory,7, No. 1, 96–98 (1969).

  83. 83.

    J. A. Bondy, “Properties of graphs with constraints on degrees,” Studia Sci. Math. Hung.,4, Nos. 1–4, 473–475 (1969).

  84. 84.

    J. Bosák, “The graphs of semigroups,” in: Theory of Graphs and Applications, Prague (1964), pp. 119–125.

  85. 85.

    J. Bosák, “Hamiltonian lines in cubic graphs,” in: Théorie des Graphes Journées Internat. d'Étude, Rome, 1966, Paris-New York (1967), pp. 35–46.

  86. 86.

    R. C. Bose and S. S. Shrikhande, “Graphs in which each pair of vertices is adjacent to the same number d of other vertices,” Studia Sci. Math. Hung.,5, Nos. 1–2, 181–195 (1970).

  87. 87.

    W. G. Brown, “On the nonexistence of a type of regular graphs of girth 5,” Canad. J. Math.,19, No. 3, 644–648 (1967).

  88. 88.

    W. G. Brown and J. W. Moon, “Sur les ensembles de sommets indépendants dans les graphes chromatiques minimaux,” Canad. J. Math.,21, No. 2, 274–278 (1969).

  89. 89.

    A. Brownlee, “Directed graph realization of degree pairs,” Amer. Math. Monthly,75, No. 1, 36–38 (1968).

  90. 90.

    R. A. Brualdi, “Matchings in arbitrary graphs,” Proc. Cambridge Phil. Soc.,69, No. 3, 401–407 (1971).

  91. 91.

    R. G. Busacker and T. L. Saaty, Finite Graphs and Networks, McGraw-Hill, New York (1965).

  92. 92.

    M. Capobianco, J. B. Frechen, and M. Kronk (eds.), Recent Trends in Graph Theory, Proc. First New York City Graph Theory Conf., June 11–13, 1970 (Lect. Notes Math., Vol. 186), Springer, Berlin (1971), 219 pages.

  93. 93.

    D. Cartwright and F. Harary, “On the coloring of signed graphs,” Elem. Math.,23, No. 4, 85–89 (1968).

  94. 94.

    G. Chartrand, “On Hamiltonian linegraphs,” Trans. Amer. Math. Soc.,134, No. 3, 559–566 (1968).

  95. 95.

    G. Chartrand and D. P. Geller, “On uniquely colorable planar graphs,” J. Comb. Theory,6, No. 3, 271–289 (1969).

  96. 96.

    G. Chartrand, D. P. Geller, and S. Hedetniemi, “A generalization of the chromatic number,” Proc. Cambridge Phil. Soc.,64, No. 2, 265–271 (1968).

  97. 97.

    G. Chartrand, D. P. Geller, and S. Hedetniemi, “Graphs with forbidden subgraphs,” J. Comb. Theory,B10, No. 1, 12–41 (1971).

  98. 98.

    G. Chartrand and S. F. Kapoor, “The cube of every connected graph is 1-Hamiltonian,” J. Res. Nat. Bur. Stds.,B73, No. 1, 47–48 (1969).

  99. 99.

    G. Chartrand and S. F. Kapoor (eds.), The Many Facets of Graph Theory, Proc. Conf. Western Michigan Univ. (Kalamazoo), Oct. 31–Nov. 2, 1968, Springer, Berlin-New York (1969), viii +290 pages.

  100. 100.

    G. Chartrand, S. F. Kapoor, and H. V. Kronk, “A sufficient condition for n-connectedness of graphs,” Mathematica,15, No. 1, 51–52 (1968).

  101. 101.

    G. Chartrand, S. F. Kapoor, and H. V. Kronk, “A generalization of Hamiltonian-connected graphs,” J. Math. Pures et Appl.,48, No. 2, 109–116 (1969).

  102. 102.

    G. Chartrand, H. V. Kronk, and D. R. Lick, “Randomly Hamiltonian digraphs,” Fund. Math.,65, No. 2, 223–226 (1969).

  103. 103.

    G. Chartrand and D. R. Lick, “Random Eulerian digraphs,” Czech. Mat. J.,21, No. 3, 424–430 (1971).

  104. 104.

    G. Chartrand and M. J. Stewart, “The connectivity of line-graphs,” Math. Ann.,182, No. 3, 170–174 (1969).

  105. 105.

    G. Chartrand and A. T. White, “Randomly traversable graphs,” Elem. Math.,25, No. 5, 101–107 (1970).

  106. 106.

    G. Chaty, “Unicité de certains chemins dans des graphes fortement connexés,” Compt. Rend.,272, No. 11, A710-A713 (1971).

  107. 107.

    V. Chvátal, “Planarity of graphs with given degrees of vertices,” Nieuw Arch. Wisk.,17, No. 1, 47–60 (1969).

  108. 108.

    G. A. Dirac “On rigid circuit graphs,” Abh. Math. Semin. Univ. Hamburg,25, Nos. 1–2, 71–76 (1961).

  109. 109.

    G. A. Dirac, “Minimally 2-connected graphs,” J. Reine und Angew. Math.,288, 204–216 (1967).

  110. 110.

    R. J. Douglas, “Tournaments that admit exactly one Hamiltonian circuit,” Proc. London Math. Soc.,21, No. 4, 716–730 (1970).

  111. 111.

    T. A. Dowling and R. Laskar, “A geometric characterization of the line graph of a projective plane,” J. Comb. Theory,3, No. 4, 402–410 (1967).

  112. 112.

    D. Elliott and P. Erdös, “Some matching theorems,” J. Indian Math. Soc.,32, Nos. 3–4, 215–219 [1968 (1969)].

  113. 113.

    P. Erdös, “Some recent results on extremal problems in graph theory (results),” in: Théorie des Graphes, Journées Internat. d'Étude, Rome, 1966, Paris-New York (1967), pp. 117–130.

  114. 114.

    P. Erdös, “Some remarks on chromatic graphs,” Colloq. Math.,16, 253–256 (1967).

  115. 115.

    P. Erdös, “Problems and results in chromatic graph theory,” in: Proof Techniques in Graph Theory, New York-London (1969), pp. 27–35.

  116. 116.

    P. Erdös, “Some unsolved problems in graph theory and combinatorial analysis,” in: Combinatorial Mathematics and Its Applications, London-New York (1971), pp. 97–109.

  117. 117.

    P. Erdös, L. Gerencsér, and A. Máaé, “Problems of graph theory concerning optimal design, in: Combinatorial Theory and Its Applications, Colloq., Balatonfüred, Hungary, Aug. 24–29, 1969 (P. Erdös et al., eds.), Vol. 1, North-Holland, Amsterdam-London (1970), pp. 317–326.

  118. 118.

    P. Erdös, A. W., Goodman, and L. Pósa, “The representation of a graph by set intersections,” Canad. J. Math.,18, No. 1, 106–112 (1966).

  119. 119.

    P. Erdös and A. Hajnal, “On chromatic number of graphs and set-systems,” Acta Math. Acad. Sci. Hung.,17, Nos. 1–2, 61–99 (1966).

  120. 120.

    P. Erdös and G. Katona (eds.), Theory of Graphs, Proc. Colloq., Tihany, Hungary, Sept., 1966, Akad. Kiadó, Budapest (1968), 370 pages.

  121. 121.

    P. Erdös and J. W. Moon, “On sets of consistent arcs in a tournament,” Canad. Math. Bull.,8, No. 3, 269–271 (1965).

  122. 122.

    P. Erdös and L. Moser, “On the representation of directed graphs as unions of orderings,” Magy. Tud. Akad. Mat. Kutató Int. Közl.,9, Nos. 1–2, 125–132 (1964).

  123. 123.

    J. Flamčik and E. Jucovič, “Colouring the edges of a multigraph,” Arch. Math.,21, No. 4, 446–448 (1970).

  124. 124.

    C. Flament, “Applications of Graph Theory to Group Structure. Sociology, Prentice-Hall, Englewood Cliffs, N. J. (1963).

  125. 125.

    J. H. Folkman, An Upper Bound on the Chromatic Number of a Graph, Rand Corp. Mem. RM-5808-PR (February, 1969).

  126. 126.

    I. T. Frisch, “An algorithm for vertex-pair connectivity,” Internat. J. Control,6, No. 6, 579–593 (1967).

  127. 127.

    D. P. Geller, “Minimally strong digraphs,” Proc. Edinburgh Math. Soc.,17, No. 1, 15–22 (1970).

  128. 128.

    D. P. Geller and F. Harary, “Connectivity in digraphs,” Lect. Notes Math.,186, 105–115 (1971).

  129. 129.

    P. C. Gilmore and A. J. Hoffman, “A characterization of comparability graphs and of interval graphs,” Canad. J. Math.,16, No. 3, 539–548 (1964).

  130. 130.

    F. Glifjak and J. Plesnik, “On the existence of certain overgraphs of given graphs,” Acta Fac. Rerum Natur. Univ. Comen. Math.,23, 113–119 (1970).

  131. 131.

    Graphentheorie, Math. Forschungsinst. Oberwolfach. Tagung, June 30–July 6, 1967.

  132. 132.

    J. E. Graver and J. Yackel, “An upper bound for Ramsey numbers,” Bull. Amer. Math. Soc.,72, No. 6, 1076–1079 (1966).

  133. 133.

    B. Grünbaum, “Grötzsch's theorem on 3-colorings,” Mich. Math. J.,10, No. 3, 303–310 (1963).

  134. 134.

    B. Grünbaum, Convex Polytopes (Pure and Appl. Math., Vol. 16), Interscience, London-New York-Sydney (1967), xiv + 456 pages.

  135. 135.

    B. Grünbaum, “Planar maps with prescribed types of vertices and faces,” Mathematica,16, No. 1, 28–36 (1969).

  136. 136.

    B. Grünbaum, “On n-connected graphs,” Math. Nachr.,39, Nos. 4–6, 345–347 (1969).

  137. 137.

    B. Grünbaum, “Higher-dimensional analogs of the four-color problems and some inequalities for simplicial complexes,” J. Comb. Theory,8, No. 2, 147–153 (1970).

  138. 138.

    R. P. Gupta, “On basis digraphs,” J. Comb. Theory,3, No. 1, 16–24 (1967).

  139. 139.

    R. P. Gupta, “A decomposition theorem for bipartite graphs (results),” in: Théorie des Graphes, Journées Internat. d'Étude, Rome, 1966, Paris-New York (1967), pp. 135–138.

  140. 140.

    R. P. Gupta, “Independence and covering numbers of line graphs and total graphs,” in: Proof Techniques in Graph Theory, New York-London (1969), pp. 61–62.

  141. 141.

    R. P. Gupta, “Bounds on the chromatic and achromatic numbers of complementary graphs,” in: Recent Progress in Combinatorics, New York-London (1969), pp. 229–235.

  142. 142.

    R. K. Guy, “A coarseness conjecture of Erdös,” J. Comb. Theory,3, No. 1, 38–42 (1967).

  143. 143.

    R. K. Guy, “Latest results of crossing numbers,” Lect. Notes Math.,186, 143–156 (1971).

  144. 144.

    R. K. Guy and L. W. Beineke, “The coarseness of the complete graph,” Canad. J. Math.,20, No. 4, 888–894 (1968).

  145. 145.

    R. K. Guy and T. A. Jenkyns, “The toroidal crossing number of Km,n,” J. Comb. Theory,6, No. 3, 235–250 (1969).

  146. 146.

    C. E. Haff, U. S. R. Murty, and R. C. Wilton, “A note on undirected graphs realizable as p. o. sets,” Canad. Math. Bull.,13, No. 3, 371–374 (1970).

  147. 147.

    S. L. Hakimi and H. Frank, “Maximum internally stable sets of a graph,” J. Math. Anal. and Appl.,25, No. 2, 296–308 (1969).

  148. 148.

    R. Halin, “A theorem on n-connected graphs,” J. Comb. Theory,7, No. 2, 150–154 (1969).

  149. 149.

    R. Halin, “Studies on minimally n-connected graphs,” in: Combinatorial Mathematics and Its Applications, London-New York (1971), pp. 129–136.

  150. 150.

    R. Halin, “Unendliche minimale n-fach zusammenhängende Graphen,” Abh. Math. Sem. Univ. Hamburg,36, 75–88 (1971).

  151. 151.

    F. Harary, “A characterization of block-graphs,” Canad. Math. Bull.,6, No. 1, 1–6 (1963).

  152. 152.

    F. Harary (ed.), Graph Theory and Theoretical Physics. Academic Press, New York-London (1967), xvi + 358 pages.

  153. 153.

    F. Harary (ed.), Proof Techniques in Graph Theory, Proc. Second Ann Arbor Graph Theory Conf., Feb., 1968, Academic Press, New York-London (1969), xv + 330 pages.

  154. 154.

    F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. (1969), 274 pages.

  155. 155.

    F. Harary, “The Greek alphabet of ‘graph theory,’” in: Recent Progress in Combinatorics, New York-London (1969), pp. 13–20.

  156. 156.

    F. Harary and L. Beineke (eds.), A Seminar on Graph Theory, Holt, Rinehart, and Winston, New York (1967), x + 116 pages.

  157. 157.

    F. Harary and S. Hedetniemi, “The achromatic number of a graph,” J. Comb. Theory,8, No. 2, 154–161 (1970).

  158. 158.

    F. Harary, S. Hedetniemi, and G. Prins, “An interpolation theorem for graphical homomorphisms,” Port. Math.,26, Nos. 3–4, 453–462 (1967).

  159. 159.

    F. Harary, L. Beineke, and R. W. Robinson, “Uniquely colorable graphs,” J. Comb. Theory,6, No. 3, 264–270 (1969).

  160. 160.

    F. Harary and C. St. J. A. Nash-Williams, “On Eulerian and Hamiltonian graphs and line graphs,” Canad. Math. Bull.,8, No. 6, 701–709 (1965).

  161. 161.

    F. Harary, R. Z. Norman, and D. Cartwright, Structural Models (An Introduction to the Theory of Directed Graphs), Wiley, New York (1965).

  162. 162.

    H. Harborth, “Diagonalen in regulären n-Eck,” Elem. Math.,24, 104–109 (1969).

  163. 163.

    I. Havel, “On the completeness number of a finite graph,” in: Beitr. Graphentheorie, Internat. Kolloq., Manebach, 1967, Leipzig (1968), pp. 71–74.

  164. 164.

    A. M. Hobbs, “A survey of thickness,” in: Recent Progress in Combinatorics, New York-London (1969), pp. 255–264.

  165. 165.

    A. J. Hoffman, “On eigenvalues and colorings of a graph,” in: Graph Theory and Applications, Proc. Advanced Sem., Academic Press, New York-London (1970), pp. 79–91.

  166. 166.

    A. J. Hoffman and L. Howes, “On eigenvalues and colorings of graphs,” Ann. New York Acad. Sci.,175, No. 1, 238–242 (1970).

  167. 167.

    J. Hopcroft and R. Tarjan, “Planarity testing in N log N steps,” Proc. IFIP Congr. 71 (Extended Abstracts), Booklet TA-2, Ljubljana (1971), pp. 18–22.

  168. 168.

    J. Hopcroft and R. Tarjan, “A V2 algorithm for determining isomorphism of planar graphs,” Inform. Process. Lett.,1, No. 1, 32–34 (1971).

  169. 169.

    W. Imrich, “Realisierung von Metriken in Graphen,” Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl., Abt. 2,178, Nos. 1–3, 19–24 (1970).

  170. 170.

    P. Kainen, “On a problem of P. Erdös,” J. Comb. Theory,5, No. 4, 374–377 (1968).

  171. 171.

    S. F. Kapoor, H. V. Kronk, and D. R. Lick, “On detours in graphs,” Canad. Math. Bull.,11, No. 2, 195–201 (1968).

  172. 172.

    J. J. Karaganis, “On the cube of a graph,” Canad. Math. Bull.,11, No. 2, 295–296 (1968).

  173. 173.

    A. Kaufmann, Introduction a la Combinatorique en vue des Applications, Dunod, Paris (1968), 609 pages.

  174. 174.

    M. Kleinert, “Die Dicke des n-dimensionalen Würfel-Graphen” J. Comb. Theory,3, No. 1, 10–15 (1965).

  175. 175.

    D. J. Kleittman, “The crossing number of K5,n,” J. Comb. Theory,9, No. 4, 315–323 (1970).

  176. 176.

    K. Knödel, Graphentheoretische Methoden und ihre Anwendungen, Springer, Berlin (1969), viii + 111 pages.

  177. 177.

    M. Koman, “On the crossing numbers of graphs,” Acta Univ. Carol. Math. et Phys.,10, Nos. 1–2, 9–46 (1969).

  178. 178.

    M. Koman, “Extremal crossing numbers of complete k-chromatic graphs,” Mat. Čas.,20, No. 4, 315–325 (1970).

  179. 179.

    A. Kotzig, “Paare hajóssche graphen,” Čas. Péstov Mat.,88, No. 2, 236–240 (1963).

  180. 180.

    A. Kotzig, “Des cycles dans des tournois,” in: Théorie des Graphes, Journées Internat. d'Étude, Rome, 1966, Paris-New York (1967), pp. 203–208.

  181. 181.

    A. Kotzig, “Sur les tournois avec des 3-cycles regulièrement placés, Mat. Čas.,19, No. 2, 126–134 (1969).

  182. 182.

    F. Kramer and H. Kramer, “Un probléme de coloration des sommets d'un graphe,” Compt. Rend.,268, No. 1, A46-A48 (1969).

  183. 183.

    M. M. Krieger, “Graphs edge-critical with respect to independence number,” Ann. New York Acad. Sci.,175, No. 1, 265–271 (1970).

  184. 184.

    H. V. Kronk, “A note on k-path Hamiltonian graphs,” J. Comb. Theory,7, No. 2, 104–106 (1969).

  185. 185.

    H. V. Kronk, “Variations on a theorem of Pósa,” Lect. Notes Math.,110, 193–197 (1969).

  186. 186.

    H. V. Kronk, “An analogue to the Heawood map-colouring problem,” J. London Math. Soc.,1, No. 4, 750–752 (1969).

  187. 187.

    J. B. Kruskal, “The number of simplices in a complex,” in: Mathematical Optimization Techniques, Univ. Calif. Press, Berkeley-Los Angeles (1963), pp. 251–278.

  188. 188.

    R. Lang and H. Walther, “Über die Anzahl der Knotenpunkte eines längsten Weges in planaren, kubischen, dreifach zusammenhängenden Graphen,” Studia Sci. Math. Hung.,5, Nos. 3–4, 221–228 (1970).

  189. 189.

    M. Las Vergnas, “Une propriété forte de connexité en théorie des graphes,” Compt. Rend.,266, No. 11, A561-A563 (1968).

  190. 190.

    M. Las Vergnas, “Une propriété forte de connexité en théorie des graphes,” Compt. Rend.,266, No. 12, A616-A618 (1968).

  191. 191.

    W. F. Lindgren, “An infinite class of hypo-Hamiltonian graphs,” Amer. Math. Monthly,74, No. 9, 1087–1089 (1967).

  192. 192.

    J. Q. Longyear, “Regular d-valent graphs of girth 6 and 2 (d2−d+1) vertices,” J. Comb. Theory,9, No. 4, 420–422 (1970).

  193. 193.

    C. S. Lorens, Flowgraphs for the Modeling and Analysis of Linear Systems, McGraw-Hill, New York-London (1964), ix + 178 pages; Brit. Nat. Bibliogr., No. 779, 20 (1964).

  194. 194.

    L. Lovász, “On chromatic number of finite set-systems,” Acta Math. Acad. Sci. Hung.,19, Nos. 1–2, 59–67 (1968).

  195. 195.

    W. Mader, “Homomorphieeigenschaften und mittlere Kantendichte von Graphen,” Math. Ann.,174, No. 4, 265–268 (1967).

  196. 196.

    W. Mader, “Homomorphiesätze für Graphen,” Math. Ann.,178, No. 2, 154–168 (1968).

  197. 197.

    W. Mader, “Minimale n-fach kantenzusammenhängende Graphen,” Math. Ann.,191, No. 1, 21–28 (1971).

  198. 198.

    W. Mader, “Minimale n-fach zusammenhängende Graphen mit maximaler Kantenzahl,” Z. reine und angew. Math.,249, 201–207 (1971).

  199. 199.

    W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations (Pure and Appl. Math., Vol. 13), Interscience, New York (1966), xii + 444 pages.

  200. 200.

    V. V. Menon, “Repeated adjoints of graphs,” in: Théorie des Graphes, Journées Internat. d'Ézude, Rome, 1966, Paris-New York (1967), pp. 245–248.

  201. 201.

    J. Mitchem, “On the point-arboricity of a graph and its complement,” Canad. J. Math.,23, No. 2, 287–292 (1971).

  202. 202.

    J. W. Moon, Topics on Tournaments, New York-Montreal-London (1968), viii + 104 pages.

  203. 203.

    J. W. Moon, “On cycles in tournaments,” Mat. Čas.,19, No. 2, 121–125 (1969).

  204. 204.

    J. W. Moon and L. Moser, “Generating oriented graphs by means of team comparisons,” Pacific J. Math.,21, No. 3, 531–535 (1967).

  205. 205.

    U. S. R. Murty, “On some extremal graphs,” Acta Math. Acad. Sci. Hung.,19, Nos. 1–2, 69–74 (1968).

  206. 206.

    U. S. R. Murty, “On critical graphs of diameter 2,” Math. Mag.,41, No. 3, 138–140 (1968).

  207. 207.

    C. St. J. A. Nash-Williams, “Hamiltonian arc and circuits,” Lect. Notes Math.,186, 197–210 (1971).

  208. 208.

    T. Nemetz, “A teijes gráf adott Hamilton körével adott számú közös élt tartalmazó Hamilton közök számarol,” Mat. Lapok,21, Nos. 1–2, 65–81 (1970).

  209. 209.

    O. Ore, “Hamilton connected graphs,” J. Math. Pures et Appl.,42, No. 1, 21–27 (1963).

  210. 210.

    O. Ore, The Four-Color Problem (Pure and Appl. Math., Vol. 27), Academic Press, New York-London (1967), xvi + 259 pages.

  211. 211.

    O. Ore and M. D. Plummer, “Cyclic coloration of plane graphs,” in: Recent Progress in Combinatorics, New York-London (1969), pp. 287–293.

  212. 212.

    A. Owens, “On the biplanar-crossing number,” IEEE Trans. Circuit Theory, CT-18, No. 2, 277–280 (1971).

  213. 213.

    I. Palasti, “On Hamilton-cycles of random graphs,” Period. Math. Hung.,1, No. 2, 107–112 (1971).

  214. 214.

    U. Pape, “Eine Bibliographie zu kürzeste Weglängen und Wege in Graphen und Netzwerken,” Elektron. Datenverarb.,11, No. 6, 271–274 (1969).

  215. 215.

    J. Plesnik, “On homogeneous tournaments,” Acta Fac. Rerum Natur. Univ. Comen. Math., No. 21, 26–34 (1969).

  216. 216.

    M. D. Plummer, On the Theory of Graphical Coverings (doctoral dissertation), Univ. Mich. (1966), 98 pages; Diss. Abstr.,B27, No. 7, 2449 (1967).

  217. 217.

    M. D. Plummer, “On minimal blocks,” Trans. Amer. Math. Soc.,134, No. 1, 85–94 (1968).

  218. 218.

    A. Pnueli, A. Lempel, and S. Even, “Transitively orientable graphs,” in: Proc. 13th Midwest Sympos. Circuit Theory, Minneapolis, Minn., 1970, New York (1970), VII 7/1–VII 7/2.

  219. 219.

    L. Pósa, “A theorem concerning Hamilton lines,” Magy. Tud. Akad. Mat. Kutató Int. Közl.,7, Nos. 1–2, 225–226 (1962).

  220. 220.

    K. P. Rajappan, “Realisation of cutset matrices into graphs,” Electron. Lett.,3, No. 10, 449–450 (1967).

  221. 221.

    R. A. Ramachandra, “An extremal problem in graph theory,” Israeli J. Math.,6, No. 3, 261–266 (1968).

  222. 222.

    R. A. Ramachandra and S. B. Rao, “On the power sequence of a graph,” Israeli J. Math.,8, No. 4, 398–402 (1970).

  223. 223.

    D. K. Ray-Chaudhuri, “Characterization of line graphs,” J. Comb. Theory,3, No.3, 201–214 (1967).

  224. 224.

    R. C. Read, “An introduction to chromatic polynomials,” J. Comb. Theory,4, No. 1, 52–71 (1968).

  225. 225.

    K. B. Reid, “On sets of arcs containing no cycles in a tournament,” Canad. Math. Bull.,12, No. 3, 261–264 (1969).

  226. 226.

    K. B. Reid, “Connectivity in products of graphs,” SLAM J. Appl. Math.,18, No. 3, 645–651 (1970).

  227. 227.

    K. B. Reid and E. T. Parker, “Disproof of a conjecture of Erdös and Moser on tournaments,” J. Comb. Theory,9, No. 3, 225–238 (1970).

  228. 228.

    P. L. Renz, “Intersection representations of graphsbyarcs,” Pacific J. Math.,34, No. 2, 501–510 (1970).

  229. 229.

    G. Ringel, Färbungsprobleme auf Flächen und Graphen, Deutsch. Verl. Wiss., Berlin (1959), vIII +132 pages; Deutsch. Nationalbibliogr., A, No. 8, 542 (1960).

  230. 230.

    G. Ringel, “Das Geschlecht des vollständigen paaren Graphen,” Abh. Math. Sem. Univ. Hamburg,28, Nos. 3–4, 139–150 (1965).

  231. 231.

    G. Ringel, “Ein Sechsfarbenproblem auf der Kugel,” Abh. Math. Sem. Univ. Hamburg,29, Nos. 1–2, 107–117 (1965).

  232. 232.

    G. Ringel and J. W. T. Youngs, “Solution of the Heawood map-coloring problem,” Proc. Nat. Acad. Sci. US,60, No. 2, 438–445 (1968).

  233. 233.

    G. Ringel and J. W. T. Youngs, “Lösung des Problems der Nachbargebiete,” Arch. Math.,20, No. 2, 190–201 (1969).

  234. 234.

    F. S. Roberts, “On the boxicity and cubicity of a graph,” in: Recent Progress in Combinatorics, New York-London (1969), pp. 301–310.

  235. 235.

    D. F. Robinson, “Symmetric embeddings of graphs,” J. Comb. Theory,9, No. 4, 377–400 (1970).

  236. 236.

    M. Rosenfeld, “On a problem of C. E. Shannon in the graph theory,” Proc. Amer. Math. Soc.,18, No. 2, 315–319 (1967).

  237. 237.

    R. Rosenstiehl (ed.), Theory of Graphs, Internat. Sympos., Rome 1967, Gordon and Breach, New York (1967).

  238. 238.

    B. Roy, Algèbre Moderne et Théorie des Graphes Orientées vers les Sciences Économiques et Sociales: Notions et Résultats Fondamentaux, Dunod, Paris (1969), 502 pages.

  239. 239.

    B. Roy, Algèbre Moderne et Théorie des Graphes Orientées vers les Sciences Économiques et Sociales: Applications et Problèmes Spécifiques, Dunod, Paris (1970), xxiv + 759 pages.

  240. 240.

    T. L. Saaty, “On polynomials and crossing numbers of complete graphs,” J. Comb. Theory,A10, No. 2, 183–184 (1971).

  241. 241.

    G. Sabidussi, “Existence and structure of self-adjoint graphs,” Math. Z.,104, No. 4, 257–280 (1968).

  242. 242.

    H. Sachs and M. Schauble, “Konstruktion von Graphen mit gewissen Färbungseigenschaften,” in: Beitr. Graphentheorie, Internat. Kolloq., Manebach, 1967, Leipzig (1968), pp. 131–136.

  243. 243.

    N. Sauer, “Extremaleigenschaften regulärer Graphen gegebener Taillenweite. I. Teil,” Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl., Abt. 2,176, Nos. 1–3, 9–25 (1967).

  244. 244.

    N. Sauer, “Extremaleigenschaften regulärer Graphen gegebener Tailenweite. II. Teil,” Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl., Abt. 2,176, Nos. 1–3, 27–43 (1967).

  245. 245.

    N. Sauer, “On the maximal number of edges in graphs with a given number of edgedisjoint triangles2,” J. London Math. Soc.,4, No. 1 153–156 (1971).

  246. 246.

    B. L. Schwartz, “Infinite self-interchange graphs,” Pacific J. Math.,31, No. 2, 497–504 (1969).

  247. 247.

    J. Sedláček, Einführung in die Graphentheorie, Teubner, Leipzig (1968), 171 pages.

  248. 248.

    Shirakawa Isao, Takahashi Hiromitsu, and Ozaki Hiroshi, “Planar decomposition of a complete bipartite graph,” Tech. Rep. Osaka Univ.,17, No. 769–800, 221–227 (1967).

  249. 249.

    J. M. S. Simoes Pereira, “Pseudosymmetry, circuit-symmetry, and path-symmetry of diagraphs,” in: Recent Progress in Combinatorics, New York-London (1969), pp. 295–299.

  250. 250.

    J. M. S. Simöes Pereira, “A note on the tree realizability of a distance matrix,” J. Comb. Theory,6, No. 3, 303–310 (1969).

  251. 251.

    M. Simonovits, “A new proof and generalizations of a theorem of Erdös and Pósa on graphs without k + 1 independent circuits,” Acta Math. Acad. Sci. Hung.,18, Nos. 1–2, 191–206 (1967).

  252. 252.

    R. Singleton, “On minimal graphs of maximum even girth,” J. Comb. Theory,1, No. 3, 306–332 (1966).

  253. 253.

    B. M. Stewart, “On a theorem of Nordhaus and Gaddum,” J. Comb. Theory,6, No. 2, 217–218 (1969).

  254. 254.

    E. Szekeres and G. Szekeres, “On a problem of Schütte and Erdös,” Math. Gaz.,49, No. 369, 290–293 (1965).

  255. 255.

    G. Szekeres and H. S. Wilf, “An inequality for the chromatic number of a graph,” J. Comb. Theory,4, No. 1, 1–3 (1968).

  256. 256.

    J.-I. Tafteberg, Weakenings of the Conjecture of Hadwiger for 8- and 9-Chromatic Graphs, Preprint Ser. Mat. Inst. Aarhus Univ., No. 22 (1970–71), 17 pages.

  257. 257.

    J.-I. Tafteberg, Théorie des Graphes, Journées Internat, d' Étude, Rome, July, 1966, Dunod, Paris; Gordon and Breach, New York (1967), xi + 416 pages.

  258. 258.

    A. Tucker, “Characterizing circular-arc graphs,” Bull. Amer. Math. Soc.,76, No. 6, 1257–1260 (1970).

  259. 259.

    J. Turner, “Key-word indexed bibliography of graph theory,” in: Proof Techniques in Graph Theory, New York-London (1969), pp. 189–330.

  260. 260.

    J. Turner and W. H. Kautz, “A survey of progress in graph theory in the Soviet Union,” SIAM Rev.,12, Suppl., 1–68 (1970).

  261. 261.

    W. T. Tutte, “A theorem on planar graphs,” Trans. Amer. Math. Soc.,82, No. 1, 99–116 (1956).

  262. 262.

    W. T. Tutte, Connectivity in Graphs, Univ. Toronto Press (1966).

  263. 263.

    W. T. Tutte (ed.), Recent Progress in Combinatorics, Proc. Third Waterloo Conf. Combinatorics, May, 1968, Academic Press, New York-London (1969), xiv + 347 pages.

  264. 264.

    W. T. Tutte, “On chromatic polynomials and the golden ratio,” J. Comb. Theory,9, No. 3, 289–296 (1970).

  265. 265.

    N. Vijayaditya, “On total chromatic number of a graph,” J. London Math. Soc.,3, No. 3, 405–408 (1971).

  266. 266.

    K. Wagner, “Beweis einer Abschwächung der Hadwiger-Vermuttung,” Math. Ann.,153, No. 2, 139–141 (1964).

  267. 267.

    K. Wagner, “Fastplättbare Graphen,” J. Comb. Theory,3, No. 4, 326–365 (1967).

  268. 268.

    K. Wagner, “Zum Basisproblem der nicht in die projektive Ebene einbettbaren Graphen (I),” J. Comb. Theory,9, No. 1, 27–43 (1970).

  269. 269.

    K. Wagner, Graphentheorie, Bibliogr. Inst., Mannheim-Vienna-Zurich (1970); 220 pages; Deutsch. Bibliogr., A, No. 1, 39 (1971).

  270. 270.

    W. D. Wallis, “A nonexistence theorem for (v, k, λ)-graphs,” J. Austral. Math. Soc.,11, No. 3, 381–383 (1970).

  271. 271.

    W. D. Wallis, “Construction of strongly regular graphs using affine designs,” Bull. Austral Math. Soc.,4, No. 1, 41–49 (1971).

  272. 272.

    H. Walther, “Über die Länge eines längsten Kreises in regulären Graphen beliebigen Zusammenhanges,” Wiss. Z. Tech. Hochschule Ilmenau,13, No. 4, Teil 2, 427–429 (1967).

  273. 273.

    H. Walther, “Über die Anzahl der Knotenpunkte eines längsten Kreises in planaren, kubischen, dreifach knotenzusammenhängenden Graphen,” Studia Sci. Math. Hung.,2, Nos. 3–4, 391–398 (1967).

  274. 274.

    H. Walther, “Über das Problem der Existenz von Hamiltonkreisen in planaren, regulären Graphen,” Math. Nachr.,39, Nos. 4–6, 277–296 (1969).

  275. 275.

    M. E. Watkins, “A theorem on Tait colorings with an application to the generalized Petersen graphs,” in: Proof Techniques in Graph Theory, New York-London (1969), pp. 171–178.

  276. 276.

    M. E. Watkins and D. M. Mesner, “Cycles and connectivity in graphs,” Canad. J. Math.,19, No. 6, 1319–1328 (1967).

  277. 277.

    D. J. A. Welsh (ed.), Combinatorial Mathematics and Its Applications, Proc. Conf. Math. Inst., Oxford, July 7–10, 1969, Academic Press, New York-London (1971), x + 364 pages.

  278. 278.

    W. Wessel, “Eine Methode zur Konstruktion von kanten-p-kritischen Graphen,” in: Beitr. Graphentheorie, Internat. Kolloq., Manebach, 1967, Leipzig (1968), pp. 207–210.

  279. 279.

    H. S. Wilf, “The eigenvalues of a graph and its chromatic number,” J. London Math. Soc.,42, No. 2, 330–332 (1967).

  280. 280.

    J. W. T. Youngs, “The mystery of Heawood conjecture,” in: Graph Theory and Applications, Proc. Adv. Sem., Academic Press, New York-London (1970), pp. 17–51.

  281. 281.

    J. Zaks, “The analogue of Eberhard's theorem for 4-valent graphs on the torus,” Israeli J. Math.,9, No. 3, 299–305 (1971).

  282. 282.

    B. Zelinka, “Graf systému tétiv dané kružnice,” Mat.-Fyz. Čas.,15, No. 4, 273–279 (1965).

  283. 283.

    B. Zelinka, “On the number of independent complete subgraphs,” Publ. Math.,13, Nos. 1–4, 95–97 (1966).

  284. 284.

    B. Zelinka, “Poznámka nekonečných hranově disjunktnich systémech cest v grafu,” Cas. Pěstov. Mat.,92, No. 3, 289–293 (1967).

  285. 285.

    B. Zelinka, “Some remarks on Menger's theorem,” Čas. Pěstov. Mat.,96, No. 2, 145–150 (1971).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki (Teoriya Veroyatnostei, Matematicheskaya Statistika, Teoreticheskaya Kibernetika), Vol. 10, pp. 25–74 (1972).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kozyrev, V.P. Graph theory. J Math Sci 2, 489–519 (1974). https://doi.org/10.1007/BF01085015

Download citation