Journal of Soviet Mathematics

, Volume 7, Issue 4, pp 587–629 | Cite as

General topology (set-theoretic trend)

  • V. I. Malykhin
  • V. I. Ponomarev


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. S. Aleksandrov, “Some results in the theory of topological spaces obtained during the past 25 years,” Usp. Mat. Nauk,15, No. 2, 25–97 (1960).Google Scholar
  2. 2.
    P. S. Aleksandrov, Introduction to Homological Dimension Theory [in Russian], Nauka, Moscow (1975).Google Scholar
  3. 3.
    P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory [in Russian], Nauka, Moscow (1973).Google Scholar
  4. 4.
    P. S. Aleksandrov and P. S. Urysohn, Memoir on Compact Topological Spaces [in Russian], Nauka, Moscow (1971).Google Scholar
  5. 5.
    G. P. Amirdzhanov and B. É. Shapirovskii, “Everywhere-dense subsets of topological spaces,” Dokl. Akad. Nauk SSSR,214, No. 2, 249–252 (1974).Google Scholar
  6. 6.
    A. V. Arkhangel'skii, “Bicompact sets and the topology of a space,” Tr. Most. Mat. Obshch.,13, 3–55 (1965).Google Scholar
  7. 7.
    A. V. Arkhangel'skii, “Maps and spaces,” Usp. Mat. Nauk,21, No. 4, 133–184 (1966).Google Scholar
  8. 8.
    A. V. Arkhangel'skii, “An extremally disconnected bicompactum of weight c is not homogeneous,” Dokl. Akad. Nauk SSSR,175, No. 4, 751–754 (1967).Google Scholar
  9. 9.
    A. V. Arkhangel'skii, “Maps associated with topological groups,” ibid.,181, No. 6, 1303–1306 (1968).Google Scholar
  10. 10.
    A. V. Arkhangel'skii, “Approximation to the theory of dyadic bicompacta,” ibid.,184, No. 4, 767–770 (1969).Google Scholar
  11. 11.
    A. V. Arkhangel'skii, “The power of bicompacta with the first axiom of countability,” ibid.,187, No. 5, 967–970 (1969).Google Scholar
  12. 12.
    A. V. Arkhangel'skii, “Suslin's number and power. Point characters in sequential bicompacta,” ibid.,199, No. 2, 255–258 (1970).Google Scholar
  13. 13.
    A. V. Arkhangel'skii, “Bicompacta which hereditarily satisfy Suslin's condition. Narrowness and free sequences,” ibid.,199, No. 6, 1227–1230 (1971).Google Scholar
  14. 14.
    A. V. Arkhangel'skii, “There is no 'naive” example of an inseparable sequential bicompactum with Suslin's properly,” ibid.,203, No. 5, 983–985 (1972).Google Scholar
  15. 15.
    A. V. Arkhangel'skii, “The frequency spectrum of a topological space and the classification of spaces,” ibid.,206, No. 2, 265–268 (1972).Google Scholar
  16. 16.
    A. V. Arkhangel'skii and V. I. Ponomarev, “Dyadic bicompacta,” ibid.,182, No. 5, 993–996 (1968).Google Scholar
  17. 17.
    A. V. Arkhangel'skii and V. I. Ponomarev, Foundations of General Topology in Problems and Examples [in Russian], Nauka, Moscow (1974).Google Scholar
  18. 18.
    A. I. Bashkirov, “Topological spaces determined by their subspaces,” Dokl. Akad. Nauk SSSR,207, No. 5, 1025–1028 (1972).Google Scholar
  19. 19.
    A. I. Bashkirov, “Classification of factor maps and sequential bicompacta,” ibid.,217, No. 4, 745–748 (1974).Google Scholar
  20. 20.
    V. M. Belugin, “Condensation in bicompacta,” ibid.,207, No. 2, 259–261 (1972).Google Scholar
  21. 21.
    V. K. Bel'nov. “Classification of Hausdorff extensions,” Vest. Mosk. Univ. Mat. Mekh., No. 5, 23–29 (1969).Google Scholar
  22. 22.
    V. K. Bel'nov, “Metric extensions,” ibid., No. 4, 60–65 (1970).Google Scholar
  23. 23.
    Yu. F. Bereznitskii, “Nonhomeomorphism of two bicompacta,” ibid., No. 6, 8–10 (1971).Google Scholar
  24. 24.
    Yu. F. Bereznitskii, “Toward a theory of absolutes,” in: Third Tiraspol'skii Symposium on General Topology and Its Applications [in Russian], Shtinitsa, Kishinev (1973), pp. 13–15.Google Scholar
  25. 25.
    M. S. Burgin, “Free topological groups and universal algebras,” Dokl. Akad. NaukSSSR,204, No. 1, 9–11 (1972).Google Scholar
  26. 26.
    A. I. Veksler, “Topological completeness of Boolean algebras in a sequential order topology,” Sib. Mat. Zh.,14, No. 4, 726–737 (1973).Google Scholar
  27. 27.
    A. I. Veksler, “Some problems of general topology arising in the theory of semiordered spaces.” in: Third Tiraspol'skii Symposium on General Topology and Its Applications [in Russian], Shtinitsa, Kishinev (1973), pp. 23–26.Google Scholar
  28. 28.
    A. I. Veksler and G. Ya. Rotkovich, “A property of irreducible images of extremally disconnected hyper-Stone bicompacta and its application to the theory of semiordered spaces,” Sib. Mat. Zh.,12, No. 2, 278–283 (1971).Google Scholar
  29. 29.
    N. V. Velichko, “H-Closed topological spaces,” Mat. Sb.,70, No. 1, 98–112 (1966).Google Scholar
  30. 30.
    N. V. Velichko, “Toward a theory of H-closed spaces,” Sib. Mat. Zh.,8, No. 4, 754–763 (1967).Google Scholar
  31. 31.
    N. V. Velichko, “The space of closed subsets,” ibid.,16, No. 3, 627–629 (1975).Google Scholar
  32. 32.
    N. V. Velichko, “Toward a theory of decomposable spaces,” Mat. Zametki (to appear).Google Scholar
  33. 33.
    A. D. Vladimirov, Boolean Algebras [in Russian], Nauka, Moscow (1969).Google Scholar
  34. 34.
    A. D. Vladimirov and B. A., Efimov, “The power of extremally disconnected spaces and of complete Boolean algebras,” Dokl. Akad. Nauk SSSR,194, No. 6, 1247–1250 (1970).Google Scholar
  35. 35.
    V. Gol'shtynskii, “Minimal Hausdorff spaces and T1-bicompacta,” ibid.,178, No. 1, 24–26 (1968).Google Scholar
  36. 36.
    A. A. Gryzlov, “C-Compact spaces,” Mat. Zametki,12, No. 6, 755–760 (1972).Google Scholar
  37. 37.
    A. A. Gryzlov, “H-Closed extensions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 21–26 (1974).Google Scholar
  38. 38.
    A. G. El'kin, “A-Sets in complete metric spaces,” Dokl. Akad. Nauk SSSR,175, No. 3, 517–520 (1967).Google Scholar
  39. 39.
    A. G. El'kin, “Decomposition of spaces,” ibid.,186, No. 1, 9–12 (1969).Google Scholar
  40. 40.
    A. G. El'kin, “Maximal decomposition of products of topological spaces,” ibid.,186, No. 4, 765–768 (1969).Google Scholar
  41. 41.
    A. G. El'kin, “Ultrafilters and indecomposable spaces,” Vest. Mosk. Univ. Mat. Mekh., No. 5, 51–56 (1969).Google Scholar
  42. 42.
    A. G. El'kin, “Indecomposable spaces and ultrafilters topologically dense-in-themselves,” Dokl. Akad. Nauk SSSR,189, No. 3, 464–467 (1969).Google Scholar
  43. 43.
    A. G. El'kin, “k-Decomposable spaces which are not maximally decomposable,” ibid.,195, No. 2, 274–277 (1970).Google Scholar
  44. 44.
    B. A. Efimov, “The power of Hausdorff spaces,” ibid.,164, No. 5, 967–970 (1965).Google Scholar
  45. 45.
    B. A. Efimov, “Dyadic bicompacta,” Tr. Mosk. Mat. Obshch.,14, 211–247 (1965).Google Scholar
  46. 46.
    B. A. Efimov, “Subspaces of dyadic bicompacta,” Dokl. Akad. Nauk SSSR,185, No. 5, 987–990 (1969).Google Scholar
  47. 47.
    B. A. Efimov, “Solution of some problems on dyadic bicompacta,” ibid.,187, No. 1, 21–24 (1969).Google Scholar
  48. 48.
    B. A. Efimov, “Embedding into bicompacta of Stone-Cech compactifications of discrete spaces,” ibid.,189, No. 2, 244–246 (1969).Google Scholar
  49. 49.
    B. A. Efimov, “Extremally disconnected bicompacta and absolutes (on the centennial of the birth of Felix Hausdorff),” Tr. Mosk. Mat. Obshch.,23, 235–276 (1970).Google Scholar
  50. 50.
    B. A. Efimov, “A problem of De Groot and a topological theorem of Ramsey type,” Sib. Mat. Zh.,11, No. 6, 1280–1290 (1970).Google Scholar
  51. 51.
    B. A. Efimov, “The power of extensions of dyadic spaces,” Mat. Sb.,96, No. 4, 614–632 (1975).Google Scholar
  52. 52.
    B. A. Efimov and V. M. Kuznetsov, “Topological types of dyadic bicompacta,” Dokl. Akad. Nauk SSSR,195, No. 1, 20–23 (1970).Google Scholar
  53. 53.
    B. A. Efimov and G. I. Chertanov, “Some operations on the class of topological spaces,” ibid.,216, No. 1, 25–27 (1974).Google Scholar
  54. 54.
    B. A. Efimov and G. I. Chertanov, “Classes of spaces not containing dyadic bicompacta of large weight,” Mat. Zametki,16, No. 3, 423–430 (1974).Google Scholar
  55. 55.
    V. I. Zaitsev, “Toward a theory of Tychonoff spaces,” Vest. Mosk. Univ. Mat. Mekh., No. 3, 48–57 (1967).Google Scholar
  56. 56.
    V. P. Zolotarev, “Intersections of topologies,” Dokl. Akad. Nauk SSSR,195, No. 3, 540–543 (1970).Google Scholar
  57. 57.
    V. L. Zubkovskii, “An example of a sequential countable homogeneous space without the first axiom of countability,” Vest. Mosk. Univ. Mat. Mekh., No. 5, 33–35 (1973).Google Scholar
  58. 58.
    M. I. Kadets, “Topological equivalence of all separable Banach spaces,” Dokl. Akad. Nauk SSSR,167, No. 1, 23–25 (1966).Google Scholar
  59. 59.
    M. Katetov, “Spaces not containing disjoint dense sets,” Mat. Sb.,21, No. 1, 3–10 (1947).Google Scholar
  60. 60.
    R. Kenderov, “A problem of Stone,” Vest. Mosk. Univ. Mat. Mekh., No. 2. 5–7 (1968).Google Scholar
  61. 61.
    A. P. Kombarov, “∑-Products of topological spaces,” Dokl. Akad. Nauk SSSR,199, No. 3, 526–528 (1971).Google Scholar
  62. 62.
    A. P. Kombarov, “Products of normal spaces. Dimension in ∑-products,” ibid.,205, No. 5, 1033–1035 (1972).Google Scholar
  63. 63.
    A. P. Kombarov, “Normality of ∑m-products,” ibid.,211, No. 3, 524–527 (1973).Google Scholar
  64. 64.
    A. P. Kombarov and V. I. Malykhin, “∑-Products” ibid.,213, No. 4, 774–776 (1973).Google Scholar
  65. 65.
    L. N. Krivonosov, “Local sequences in metric spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 43–54 (1974).Google Scholar
  66. 66.
    K. Kuratowski, Topology, Vol. 1, Academic Press (1966).Google Scholar
  67. 67.
    K. Kuratowski, Topology, Vol. 2, Academic Press (1969).Google Scholar
  68. 68.
    V. A. Lyubetskii, “The existence of a nonmeasurable set of type A2 implies the existence of an uncountable set of type CA without perfect kernel,” Dokl. Akad. Nauk SSSR,195, No. 3, 548–550 (1970).Google Scholar
  69. 69.
    V. A. Lyubetskii, “Independence of some propositions of descriptive set theory from Zermelo-Fraenkel set theory,” Vest. Mosk. Univ. Mat. Mekh., No. 2. 78–82 (1971).Google Scholar
  70. 70.
    V. I. Malykhin, “Narrowness in Suslin's sense in exp X and in products of spaces,” Dokl. Akad. Nauk SSSR,203, No. 5, 1001–1003 (1972).Google Scholar
  71. 71.
    V. I. Malykhin, “Countable spaces which are not bicompactifications of countable narrowness,” ibid.,206, No. 6, 1293–1295 (1972).Google Scholar
  72. 72.
    V. I. Malykhin, “Products of ultrafilters and indecomposable spaces,” Mat. Sb.,90, No. 1, 106–116 (1973).Google Scholar
  73. 73.
    V. I. Malykhin, “Nonnormality of some subspaces of βX, where X is a discrete space,” Dokl. Akad. Nauk SSSR, 211, No. 4, 781–783 (1973).Google Scholar
  74. 74.
    V. I. Malykhin, “Products of extremally disconnected spaces and a measurable cardinal,” in: Third Tiraspol'skii Symposium on General Topology and Its Applications [in Russian], Shtinitsa, Kishinev (1973), pp. 65–66.Google Scholar
  75. 75.
    V. I. Malykhin, “Decomposable and maximal spaces,” Dokl. Akad. Nauk SSSR,218, No. 5, 1017–1020 (1975).Google Scholar
  76. 76.
    V. I. Malykhin, “Extremally disconnected and related groups,” ibid.,220, No. 1, 27–30 (1975).Google Scholar
  77. 77.
    V. I. Malykhin, “Sequential bicompacta: π-points and Stone-Cech extensions,” Vest. Mosk. Univ. Mat. Mekh., No. 1. 23–29 (1975).Google Scholar
  78. 78.
    V. I. Malykhin, “Decomposition of a product of two spaces and a problem of Katetov,” Dokl. Akad. Nauk SSSR,222, No. 5, 1033–1036 (1975).Google Scholar
  79. 79.
    V. I. Malykhin, “Maximal and decomposable spaces II,” ibid.,223, No. 5, 1060–1063 (1975).Google Scholar
  80. 80.
    V. I. Malykhin and B. É. Shapirovskii, “Martin's Axiom and properties of topological spaces,” ibid.,213, No. 3, 532–535 (1973).Google Scholar
  81. 81.
    V. V. Mishkin, “Completion of nonmetrizable spaces and cobicompactness,” Vest. Mosk. Univ. Mat. Mekh., No. 40, 3–8 (1974).Google Scholar
  82. 82.
    S. Nedev, “O-Metrizable spaces,” Tr. Mosk. Mat. Obshch.,24, 201–236 (1971).Google Scholar
  83. 83.
    S. Nedev and M. M. Choban, “Metrlzability of topological groups,” Vest. Mosk. Univ. Mat. Mekh., No. 6, 18–20 (1968).Google Scholar
  84. 84.
    T. Ya. Nepomnyashchaya, “Projective extension of affine structure. Pascal's configuration in three-dimensional space described by model-theoretic methods,” Uch. Zap. Ivanov. Gos. Ped. Inst.,106, 36–76 (1972).Google Scholar
  85. 85.
    I. I. Parovichenko, “A universal bicompactum of weight ℵ,” Dokl. Akad. Nauk SSSR,150, No. 1, 36–39 (1963).Google Scholar
  86. 86.
    I. I. Parovichenko, “The branching hypothesis and the relation between local weight and power of topological spaces,” ibid.,174, No. 1, 30–32 (1967).Google Scholar
  87. 87.
    V. V. Pashenkov, “Representation of topological spaces in Boolean algebras of regular open sets,” Mat. Sb.,91, No. 3, 291–309 (1973).Google Scholar
  88. 88.
    V. V. Pashenkov, “Extensions of bicompacta,” Dokl. Akad. Nauk SSSR,214, No. 1, 44–47 (1974).Google Scholar
  89. 89.
    A. Pelczynski, Linear Extensions, Linear Interpolations, and Their Applications to Linear Topological Classification of Spaces of Continuous Functions [Russian translation], Mir, Moscow (1970).Google Scholar
  90. 90.
    V. I. Ponomarev, “Borel sets in perfectly normal bicompacta,” Dokl. Akad. Nauk SSSR,170, No. 3, 520–523 (1966).Google Scholar
  91. 91.
    V. I. Ponomarev, “The power of bicompacta with first axiom of countability,” ibid.,196, No. 2, 296–298 (1971).Google Scholar
  92. 92.
    V. V. Popov, “Topology of the space of closed subsets,” Vest. Mosk. Univ. Mat. Mekh., No. 1, 65–70 (1975).Google Scholar
  93. 93.
    A. I. Raikhberg, “Extremally disconnected spaces with unique homeomorphisms onto themselves,” Dokl. Akad. Nauk SSSR,195, No. 3, 562–563 (1970).Google Scholar
  94. 94.
    A. I. Raikhberg, “A class of perfectly normal bicompacta,” Vest. Mosk. Univ. Mat. Mekh., No. 4, 26–30 (1971).Google Scholar
  95. 95.
    D. V. Ranchin, “Compactness in terms of ideal modules,” Dokl. Akad. Nauk SSSR,202, No. 4, 761–764 (1972).Google Scholar
  96. 96.
    D. V. Ranchin, “Narrowness, sequentially, and closed covers of k-spaces,” in: Third Tiraspol'skii Symposium on General Topology and Its Applications [in Russian], Shtinitsa, Kishinev (1973), pp. 106–107.Google Scholar
  97. 97.
    R. Sikorski, Boolean Algebras, Springer-Verlag (1969).Google Scholar
  98. 98.
    S. Sirota, “Spectral representation of spaces of closed subsets of bicompacta,” Dokl. Akad. Nauk SSSR,181, No. 5, 1069–1072 (1968).Google Scholar
  99. 99.
    S. Sirota, “Topologies on products of groups,” ibid.,183, No. 6, 1265–1268 (1968).Google Scholar
  100. 100.
    S. Sirota, “The product of topological groups and extremal disconnectedness,” Mat. Sb.,79, No. 2, 179–192 (1969).Google Scholar
  101. 101.
    V. M. Ul'yanov, “Bicompact extensions with the first axiom of countability which do not raise weight and dimension,” Dokl. Akad. Nauk SSSR,217, No. 6, 1263–1265 (1974).Google Scholar
  102. 102.
    V. M. Ul'yanov, “Examples of final-compact spaces which are not bicompact extensions of countable character,” ibid.,220, No. 6, 1282–1285 (1975).Google Scholar
  103. 103.
    V. M. Ul'yanov, “Bicompact extensions with the first axiom of countability and continuous maps,” Mat. Zametki,15, No. 3, 491–499 (1974).Google Scholar
  104. 104.
    V. V. Fedorchuk, “Baire's theorem for H-closed spaces,” Usp. Mat. Nauk,27, No. 6, 254 (1972).Google Scholar
  105. 105.
    V. V. Fedorchuk, “A problem of Tikhonov [Tychonoff],” Dokl. Akad. Nauk SSSR,210, No. 6, 1297–1299 (1973).Google Scholar
  106. 106.
    V. V. Fedorchuk, “Boolean δ-algebras and quasi-open maps,” Sib. Mat. Zh.,14, No. 5, 1088–1099 (1973).Google Scholar
  107. 107.
    V. V. Fedorchuk, “Bicompacta without canonical correct sets,” Dokl. Akad. Nauk SSSR,218, No. 1, 50–53 (1974).Google Scholar
  108. 108.
    V. V. Fedorchuk, “Consistency of some theorems of general topology with axioms of set theory,” ibid.,220, No. 4, 786–788 (1975).Google Scholar
  109. 109.
    V. V. Fedorchuk, “A bicompactum all of whose infinite closed subsets are n-dimensional,” Mat. Sb.,96, No. 1, 41–62 (1975).Google Scholar
  110. 110.
    V. V. Fedorchuk, “The power of hereditarily separable bicompacta,” ibid.,222, No. 2, 302–305 (1975).Google Scholar
  111. 111.
    F. Hausdorff, Set Theory, Chelsea Publ., New York.Google Scholar
  112. 112.
    A. V. Chernavskii, “A note on Schneider's theorem on the existence in a perfectly normal bicompactum of an A-set which is not a B-set,” Vest. Mosk. Univ. Mat. Mekh., No. 2, 20 (1962).Google Scholar
  113. 113.
    M. M. Choban, “Sections on topological groups and their applications, II,” in: Third Tiraspol'skii Symposium on General Topology and Its Applications [in Russian], Shtinitsa, Kishinev (1973), pp. 134–136.Google Scholar
  114. 114.
    M. M. Choban, “Continuous images of complete spaces,” Tr. Mosk. Mat. Obshch.,30, 23–59 (1974).Google Scholar
  115. 115.
    D. V. Chudnovskii, “Nonstandard analysis and homeomorphism of B-spaces,” Dokl. Akad. Nauk SSSR,185, No. 4, 772–774 (1969).Google Scholar
  116. 116.
    D. V. Chudnovskii, “N-Compactness and properties of measurability,” Ukr. Mat. Zh.,24, No. 1, 118–121 (1972).Google Scholar
  117. 117.
    D. V. Chudnovskii, “Set theory, and topological properties of products of discrete spaces,” Dokl. Akad. Nauk SSSR,204, No. 2, 298–301 (1972).Google Scholar
  118. 118.
    N. A. Shanin, “Special extensions of topological spaces,” ibid.,38, No. 1, 7–11 (1943).Google Scholar
  119. 119.
    N. A. Shanin, “Separability in topological spaces,” ibid.,38, No. 4, 118–122 (1943).Google Scholar
  120. 120.
    L. B. Shapiro, “A reduction of the basic problem on bicompact extensions of Wallman type,” ibid.,217, No. 1, 38–41 (1974).Google Scholar
  121. 121.
    L. B. Shapiro, “Three examples in the theory of bicompact extensions of topological spaces,” ibid.,217, No. 4, 774–776 (1974).Google Scholar
  122. 122.
    B. É. Shapirovskii, “Discrete subspaces of topological spaces. Weight, narrowness, and Suslin number,” ibid.,202, No. 4, 779–782 (1972).Google Scholar
  123. 123.
    B. É. Shapirovskii, “Density of topological spaces,” ibid.,206, No. 3, 559–562 (1972).Google Scholar
  124. 124.
    B. É. Shapirovskii, “Separability and metrizability of spaces with Suslin's condition,” ibid.,207, No. 4, 800–803 (1972).Google Scholar
  125. 125.
    B. É. Shapirovskii, “Spaces with Suslin and Shanin's condition,” Mat. Zametki,15, No. 2. 281–288 (1974).Google Scholar
  126. 126.
    B. É. Shapirovskii, “Canonical sets and character. Density and weight in bicompacta,” Dokl. Akad. Nauk SSSR,218, No. 1, 58–61 (1974).Google Scholar
  127. 127.
    A. P. Shostak, “E-Compact spaces,” ibid.,205, No. 6, 1310–1312 (1972).Google Scholar
  128. 128.
    A. P. Shostak, “E-Compact spaces,” in: Third Tiraspol'skii Symposium on General Topology and Its Applications [in Russian], Shtinitsa, Kishinev (1973), pp. 144–145.Google Scholar
  129. 129.
    A. P. Shostak, “E-Compact extensions of topological spaces,” Funktional. Analiz Ego Prilozheniya,8, No. 1, 62–68 (1974).Google Scholar
  130. 130.
    J. M. Aarts, “Completeness degree. A generalization of dimension,” Fund. Math.,63, No. 1, 27–41 (1968).Google Scholar
  131. 131.
    J. M. Aarts, “Every metric compactification is a Wallman-type compactification,” in: Proc. Int. Symp. Top. and Its Appl. Herceg Novi 1968, Beograd (1969), pp. 29–34.Google Scholar
  132. 132.
    J. M. Aarts, “Cocompactifications,” Indag. Math.,73, No. 1, 9–21 (1970).Google Scholar
  133. 133.
    J. M. Aarts and B. P. Emde, “Continua as remainders in compact extensions,” Niew. Arch. Wiskunde Ser. 3,15, No. 1, 34–37 (1967).Google Scholar
  134. 134.
    J. M. Aarts and J. De Groot, Colloquium Co-topologie, Math. Centrum Syllabus ZWA, Amsterdam (1964).Google Scholar
  135. 135.
    J. M. Aarts, J. De Groot, and R. H. McDowell, “Cocompactness,” Niew. Arch. Wiskunde Ser. 3,18, No. 1, 2–15 (1970).Google Scholar
  136. 136.
    P. Agashe and N. Levine, “Adjacent topologies,” J. Math. Tokushima Univ.,7, 21–35 (1973).Google Scholar
  137. 137.
    M. Alagic, “A monadic approach to k-spaces,” Mat. Vesn.,11, No. 3, 239–243 (1974).Google Scholar
  138. 138.
    O. Alas, “Topological groups and uniform continuity,” Port. Math.,30, Nos. 3–4, 137–143 (1971).Google Scholar
  139. 139.
    P. S. Alexandrof, “On some results concerning topological spaces and their continuous mappings,” Gen. Top. and Related Mod. Anal. and Algebra: Proc. Sympos. Prague 1961, Publ. House Czech. Acad. Sci., Prague (1962), pp. 41–54.Google Scholar
  140. 140.
    R. A. Alo and H. L. Shapiro, “Wallman and realcompact spaces,” Contrib. Extens. Theory Topol. Struct. Proc. Sympos. Berlin 1967, Berlin (1969), pp. 9–14.Google Scholar
  141. 141.
    B. A. Anderson, “Families of mutually complementary topologies,” Proc. Amer. Math. Soc.,29, No. 2, 362–368 (1972).Google Scholar
  142. 142.
    B. A. Anderson and D. G. Stewart, “T1-Complements of T1-topologies,” ibid.,23, No. 1, 77–81 (1969).Google Scholar
  143. 143.
    A. V. Arkhangel'skii, “A characterization of very k-spaces,” Czech. Mat. J.,18, No. 3, 392–395 (1968).Google Scholar
  144. 144.
    A. V. Arkhangel'skii and S. P. Franklin, “Ordinal invariants for topological spaces,” Mich. Math. J.,15, No. 3, 313–320 (1968).Google Scholar
  145. 145.
    S. P. Arya and A. Mathur, “On Em spaces,” Glas. Math.,8, No. 1, 139–143 (1973).Google Scholar
  146. 146.
    C. E. Aull, “A certain class of topological spaces,” Roczn. Polsk. Towarz. Mat. Ser. 1,11, No. 1, 49–53 (1967).Google Scholar
  147. 147.
    C. E. Aull, “Initial and final topologies,” Glas. Math.,8, No. 2, 305–310 (1973).Google Scholar
  148. 148.
    A. P. Baartz and G. G. Miller, “Suslin's conjecture as a problem on the real line,” Pacific J. Math.,43, No. 2, 277–281 (1972).Google Scholar
  149. 149.
    I. Baggs, “A connected Hausdorff space which is not contained in a maximal connected space,” ibid.,51, No. 1, 11–18 (1974).Google Scholar
  150. 150.
    R. W. Bagley and D. D. Weddington, “Products of k'-spaces,” Proc. Amer. Math. Soc.,22, No. 2, 392–394 (1969).Google Scholar
  151. 151.
    B. Balcar and P. Vopenka, “On systems of almost disjoint sets,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,20, No. 6, 421–424 (1972).Google Scholar
  152. 152.
    Ch. Brandt, “Wallman-Shanin Kompaktifizierungen und die projektive Ordnung,” Inaugural Dissertation, Ernst-Moritz-Arndt-Universität Greifswald (1974).Google Scholar
  153. 153.
    Ch. Brandt, “On Wallman-Shanin compactifications,” Math. Nachr. (to appear).Google Scholar
  154. 154.
    A. I. Bashkirov, “On supremum of compact topologies,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,21, No. 8, 699–703 (1973).Google Scholar
  155. 155.
    J. E. Baumgartner, “ℵ1-Densesets of reals can be isomorphic,” Fund. Math.,79, No. 2, 101–106 (1973).Google Scholar
  156. 156.
    H. L. Bentley, “Some Wallman compactifications determined by retracts,” Proc. Amer. Math. Soc.,33, No. 2, 587–593 (1972).Google Scholar
  157. 157.
    A. R. Bernstein, “A new kind of compactness for topological spaces,” Fund. Math.,66, No. 2, 186–193 (1970).Google Scholar
  158. 158.
    M. P. Berri, J. R. Porter, and R. M. Stefenson, “A survey of minimal topological spaces,” Gen. Topol. and Relat. Mod. Anal. and Algebra., Proc. Kanpur Topol. Conf. 1968, Publ. House Czech. Acad. Sci., Prague (1971), pp. 93–114.Google Scholar
  159. 159.
    R. N. Bhaumik and D. N. Misra, “A generalization of K-compact spaces,” Czech. Math. J.,21, No. 4, 625–632 (1971).Google Scholar
  160. 160.
    Ch. Biles, “Wallman-type compactifications,” Proc. Amer. Math. Soc.,25, No. 2, 363–368 (1970).Google Scholar
  161. 161.
    G. R. Blakely, J. Gerlits, and K. D. Magill, “A class of spaces with identical remainders,” Stud. Sci. Math. Hung.,6, Nos. 1–2, 117–122 (1971).Google Scholar
  162. 162.
    A. Blass, “The Rudin-Keisler ordering of P-points,” Trans. Amer. Math. Soc.,179, 145–166 (1973).Google Scholar
  163. 163.
    R. L. Blefko, “Some classes of E-compactness,” J. Austral. Math. Soc.,13, No. 4, 492–500 (1972).Google Scholar
  164. 164.
    T. K. Boehme and M. Rosenfeld, “An example of two compact Hausdorff Frechet spaces whose product is not Frechet,” J. London Math. Soc.,8, No. 2, 339–344 (1974).Google Scholar
  165. 165.
    D. Booth, “Ultrafilters on countable sets,” Ann. Math. Log.,2, No. 1, 1–24 (1970).Google Scholar
  166. 166.
    D. Booth, “Generic covers and dimension,” Duke Math. J.,38, No. 4, 667–670 (1971).Google Scholar
  167. 167.
    J. C. Bradford and C. Goffman, “Metric spaces in which Blumberg's theorem holds,” Proc. Amer. Math. Soc.,11, No. 4, 667–670 (1960).Google Scholar
  168. 168.
    J. B. Brown, “Metric spaces in which a strengthened form of Blumberg's theorem holds,” Fund. Math.,71, No. 3, 243–253 (1971).Google Scholar
  169. 169.
    L. Bukovsky, “Borel subsets of metric separable spaces,” Gen. Top. and Relat. Mod. Anal. and Algebra, Vol. 2, Prague (1967), pp. 83–86.Google Scholar
  170. 170.
    D. E. Cameron, “Maximal and minimal topologies,” Trans. Amer. Math. Soc.,160 229–248 (1971).Google Scholar
  171. 171.
    D. Carnanan, “Locally nearly compact spaces,” Boll. Unione Mat. Ital.,6, No. 2, 146–153 (1972).Google Scholar
  172. 172.
    E. Čech, Topological Spaces, Czech. Acad. Sci., Prague (1966).Google Scholar
  173. 173.
    J. Ceder and T. Pearson, “On product of maximally resolvable spaces,” Pacific J. Math.,22, No. 1, 31–45 (1967).Google Scholar
  174. 174.
    R. E. Chandler and R. Gellar, “The compactifications to which an element of C*(X) extends,” Proc. Amer. Math. Soc.,38, No. 3, 637–639 (1973).Google Scholar
  175. 175.
    G. Cherlin and J. Hirschfeld, “Ultrafilters and ultraproducts in nonstandard analysis,” Contrib. Nonstandard Analysis, Amsterdam-London (1972), pp. 261–279.Google Scholar
  176. 176.
    G. Choquet, “Construction d'ultrafiltres sur N,” Bull. Sci. Math.,92, Nos. 1–2, 41–48 (1968).Google Scholar
  177. 177.
    A. C., Cochran and R. B. Tail, “Regularity and complete regularity for convergence spaces,” Lect. Notes Math.,375, 64–70 (1974).Google Scholar
  178. 178.
    W. W. Comfort, “A survey of cardinal invariants,” Gen. Topol. and Appl.,1, No. 2, 163–169 (1971).Google Scholar
  179. 179.
    W. W. Comfort and A. Hager, “Cardinality of t-complete Boolean algebras,” Pacific J. Math.,40, No. 3, 541–545 (1972).Google Scholar
  180. 180.
    W. W. Comfort and S. Negrepontis, “Homeomorphs of three subspaces ofβN\N,” Math. Z.,107, No. 1, 53–58 (1968).Google Scholar
  181. 181.
    W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters (Grundlehren Math. Wiss. Einzeldarstell., 211), Springer, Berlin, etc. (1974).Google Scholar
  182. 182.
    W. W. Comfort and V. Saks, “Countably compact groups and finest totally bounded topologies,” Notices Amer. Math. Soc.,19, No. 6, A-720(1972).Google Scholar
  183. 183.
    R. Duda, “Inverse limits and hyperspaces,” Colloq. Math.,23, No. 2, 225–232 (1971).Google Scholar
  184. 184.
    B. A. Efimov and E. Engelking, “Remarks on dyadic spaces II,” ibid.,13, No. 2, 181–197 (1965).Google Scholar
  185. 185.
    R. Engelking, “Cartesian products and dyadic spaces,” Fund. Math.,57, No. 3, 287–304 (1965).Google Scholar
  186. 186.
    R. Engelking, Outline of General Topology, North Holland-PWH, Amsterdam-Warsaw (1968).Google Scholar
  187. 187.
    R. Engelking and S. Mrówka, “On E-compact spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,6, No. 7, 429–436 (1958).Google Scholar
  188. 188.
    R. Engelking and A. Pelchynski, “Remarks on dyadic spaces,” Colloq. Math.,11, No. 1, 55–63 (1963).Google Scholar
  189. 189.
    P. Erdös and S. Shelan, “Separability properties of almost-disjoint families of sets,” Isr. J. Math.,12, No. 1, 207–214 (1972).Google Scholar
  190. 190.
    P. Erdös and A. H. Stone, “On the sum of two Borel sets,” Proc. Amer. Math. Soc.,25, No. 2, 304–306 (1970).Google Scholar
  191. 191.
    W. Fleissner, “Normal Moore spaces in the constructible inverse,” Proc. Amer. Math. Soc.,46, No. 2, 294–298 (1974).Google Scholar
  192. 192.
    R. Fric, “Regularity and extension of mappings in sequential spaces,” Comment. Math. Univ. Carol.,15, No. 1, 161–171 (1974).Google Scholar
  193. 193.
    O. Frink, “Compactifications and semi-normal spaces,” Amer. J. Math.,86, No. 3, 602–607 (1964).Google Scholar
  194. 194.
    Z. Frolik, “On analytic spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,9, No. 10, 721–726 (1961).Google Scholar
  195. 195.
    Z. Frolik, “On two problems of W. W. Comfort,” Comment. Math. Univ. Carol.,8, No. 1, 139–144 (1967).Google Scholar
  196. 196.
    Z. Frolik, “Homogeneity problems for extremally disconnected spaces,” ibid., No. 4, 757–763 (1967).Google Scholar
  197. 197.
    Z. Frolik, “On B-spaces,” ibid.,9, No. 4, 651–658 (1968).Google Scholar
  198. 198.
    Z. Frolik, “A separation theorem and applications to Borel sets,” Czech. Math. J.,20, No. 1, 98–108 (1970).Google Scholar
  199. 199.
    Z. Frolik, “A survey of separable descriptive theory of sets and spaces,” ibid., No. 3, 406–467 (1970).Google Scholar
  200. 200.
    Z. Frolik and S. Mrówka, “Perfect images of R-and N-compact spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,19, No. 5, 369–371 (1971).Google Scholar
  201. 201.
    P. Gale, “Compact sets of functions and function rings,” Proc. Amer. Math. Soc.,1, No. 1, 303–308 (1950).Google Scholar
  202. 202.
    J. Gerlits, “On the depth of topological spaces,” ibid.,44, No. 2, 507–508 (1974).Google Scholar
  203. 203.
    H. Gonshor, “Remarks on a paper by Bernstein,” Fund. Math.,74, No. 3, 195–196 (1972).Google Scholar
  204. 204.
    H. Gonshor, “Protective covers as subquotients of enlargements,” Isr. J. Math.,14, No. 3, 257–261 (1973).Google Scholar
  205. 205.
    J. de Groot, “Discrete subspaces of Hausdorff spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,13, No. 8, 537–544 (1965).Google Scholar
  206. 206.
    J. de Groot, “Supercompactness and superextensions,” Contribs. Extens. Theory Topol. Struct. Proc. Sympos. Berlin 1967, Berlin (1969), pp. 89–90.Google Scholar
  207. 207.
    J. de Groot and P. S. Schnare, “A topological characterization of products of compact totally ordered spaces,” Gen. Top. and Appl., 2, No. 2, 67–73 (1972).Google Scholar
  208. 208.
    J. de Groot, G. A. Jensen, and A. Verbeek, “Superextensions,” Rept. Math. Centrum, ZW, No. 17 (1968).Google Scholar
  209. 209.
    D. W. Hajek and R. G. Wilson, “Compact spaces are inverse limits of supercompact spaces,” J. London Math. Soc.,6, No. 4, 690–692 (1973).Google Scholar
  210. 210.
    A. Hajnal and I. Juhasz, “Discrete spaces of topological spaces,” Indag. Math.,29, No. 2, 343–356 (1967).Google Scholar
  211. 211.
    A. Hajnal and I. Juhasz, “Discrete subspaces of topological spaces II,” ibid.,31, No. 1, 18–30 (1969).Google Scholar
  212. 212.
    A. Hajnal and I. Juhasz, “A consequence of Martin's Axiom,” ibid.,33, No. 5, 457–463 (1971).Google Scholar
  213. 213.
    A. Hajnal and I. Juhasz, “On discrete subspaces of product spaces,” Gen. Top. and Appl.,2, No. 1, 11–16 (1972).Google Scholar
  214. 214.
    A. Hajnal and I. Juhasz, “A consistency result concerning hereditarilyα-separable spaces,” ibid.,35, No. 4, 301–307 (1973).Google Scholar
  215. 215.
    A. Hajnal and I. Juhasz, “A consistency result concerning hereditarilyα-Lindelöf spaces,” Acta Math. Acad. Sci. Hung.,24, Nos. 3–4, 307–312 (1973).Google Scholar
  216. 216.
    A. Hajnal and I. Juhasz, “On square-compact cardinals,” Period. Math. Hung.,3, Nos. 3–4, 285–288 (1973).Google Scholar
  217. 217.
    A. Hajnal and I. Juhasz, “On hereditarilyα-Lindelöf andα-separable spaces, II,” Fund. Math.,81, No. 2, 147–158 (1974).Google Scholar
  218. 218.
    P. Hamburger, “On Wallman-type, regular Wallman-type, and z-compactifications,” Period. Math. Hung.,1, No. 4, 303–309 (1971).Google Scholar
  219. 219.
    R. W. Hansell, “On the nonseparable theory of Borel and Suslin sets,” Bull. Amer. Math. Soc.,78, No. 2, 236–241 (1972).Google Scholar
  220. 220.
    R. W. Hansell, “On the nonseparable theory of k-Borel and k-Suslin sets,” Gen. Top. and Appl.,3, No. 2, 161–195 (1973).Google Scholar
  221. 221.
    D. Harris, “Katetov extensions as a functor,” Math. Ann.,193, No. 3, 171–175 (1971).Google Scholar
  222. 222.
    B. Hearsey, “Regularity in convergence spaces,” Port. Math.,30, Nos. 3–4, 201–213 (1971).Google Scholar
  223. 223.
    S. H. Hechler, “Independence results concerning a problem of N. Lusin,” Math. Syst. Theory,4, No. 4, 316–322 (1970).Google Scholar
  224. 224.
    S. H. Hechler, “Classifying almost-disjoint families with applications toβN\N,” Isr. J. Math.,10, No. 4, 413–432 (1971).Google Scholar
  225. 225.
    S. H. Hechler, “Short complete nested sequences inβN\N and small maximal almost-disjoint families,” Gen. Top. and Appl.,2, No. 3, 139–149 (1972).Google Scholar
  226. 226.
    S. H. Hechler, “Independence results concerning the number of nowhere-dense sets necessary to cover the real line,” Acta Math. Sci. Hung.,24, Nos. 1–2, 27–32 (1973).Google Scholar
  227. 227.
    S. H. Hechler, “Exponents of some N-compact spaces,” Isr. J. Math.,15, No. 4, 384–395 (1973).Google Scholar
  228. 228.
    H. Herrlich, “Wann sind alle stetigen Abbildungen in Y konstant?,” Math. Z.,90, 152–154 (1965).Google Scholar
  229. 229.
    H. Herrlich, “Nicht alle T2-minimalen Bäume sind von 2. Kategorie,” ibid.,91, No. 3, 185 (1966).Google Scholar
  230. 230.
    H. Herrlich, “Fortsetzbarkeit stetiger Abbildungen und kompaktheitsgrad topologischer Bäume,” ibid.96, 64–72 (1967).Google Scholar
  231. 231.
    H. Herrlich,U-kompakte Räume,” ibid. No. 2, 228–255 (1967).Google Scholar
  232. 232.
    H. Herrlich, “Regular-closed, Urysohn-closed, and completely Hausdorff-closed spaces,” Proc. Amer. Math. Soc.,26, No. 4, 695–698 (1970).Google Scholar
  233. 233.
    J. Heubener, “Complementation in the lattice of regular topologies,” Pacific J. Math.,43, No. 1, 139–149 (1972).Google Scholar
  234. 234.
    E. Hewitt, “A problem of set-theoretic topology,” Duke Math. J.,10, No. 2, 309–333 (1943).Google Scholar
  235. 235.
    N. Hindman, “On the existence of c-points inβN\N,” Proc. Amer. Math. Soc.,21, No. 2, 277–280 (1969).Google Scholar
  236. 236.
    N. Hindman, “The existence of certain ultrafilters on N and a conjecture of Graham and Rothschild,” ibid.,36, No. 2, 341–346 (1972).Google Scholar
  237. 237.
    N. Hindman, “Preimages of points under the natural map fromβ(N × N) toβN ×βN,” ibid.,37, No. 2, 603–608 (1973).Google Scholar
  238. 238.
    N. Hindman, “Finite sums from sequences within cells of a partition of N,” J. Combin. Th.,17, No. 1, 1–11 (1974).Google Scholar
  239. 239.
    R. E. Hodel and J. E. Vayghan, “A note on [a, b]-compactness,” Gen. Top. and Appl.,4, No. 2, 179–189 (1974).Google Scholar
  240. 240.
    M. Hušek, “Simple categories of topological spaces,” Gen. Topol. and Relat. Mod. Anal. and Algebra: Proc. Third Prague Topol. Sympos. 1971, Publ. House Czech. Acad. Sci., Prague (1972), pp. 203–207.Google Scholar
  241. 241.
    M. Hušek, “Perfect images of E-compact spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,20, No. 1, 41–45 (1972).Google Scholar
  242. 242.
    M. Hušek and J. Pelant, “Note about atom-categories of topological spaces.” Comment. Math. Univ. Carol.,15, No. 4, 767–773 (1974).Google Scholar
  243. 243.
    J. R. Isbell, “Remarks on spaces of large cardinal numbers,” Czech. Math. J.,14, No. 3, 383–385 (1964).Google Scholar
  244. 244.
    J. R. Isbell, “Spaces without large projective subspaces,” Math. Scand.,17, 89–105 (1965).Google Scholar
  245. 245.
    S. Janakiraman and M. Rajagopalan, “Finer topologies in locally compact groups,” Gen. Topol. and Relat. Mod. Anal. and Algebra: Proc. Kanpur Topol. Conf. 1968, Publ. House Czech. Acad. Sci., Prague (1971), p. 155.Google Scholar
  246. 246.
    T. Jech, “Nonprovability of Suslin's hypothesis,” Comment. Math. Univ. Carol.,8, No. 2, 291–305 (1967).Google Scholar
  247. 247.
    R. B. Jensen, “Suslin's hypothesis is incompatible with V=L,” Notices Amer. Math. Soc.,15, 935 (1968).Google Scholar
  248. 248.
    R. B. Jensen, “Suslin's hypothesis=weak compactness in L,” ibid.,16, 842 (1969).Google Scholar
  249. 249.
    F. B. Jones, “Hereditarily separable, noncompletely regular spaces,” Lect. Notes Math.,375, 149–152 (1974).Google Scholar
  250. 250.
    B. Jonsson, “Universal relational systems,” Math. Scand.,4, No. 2, 193–208 (1956).Google Scholar
  251. 251.
    B. Jonsson, “Homogeneous universal relational systems,” ibid.,8, No. 1, 132–142 (1960).Google Scholar
  252. 252.
    I. Juhasz, “On square-compact cardinals,” Rept. Math. Cent., No. 17 (1969).Google Scholar
  253. 253.
    I. Juhasz, “Arkhangel'skii's solution of Alexandrov's problem,” ibid., ZW, No. 13 (1969).Google Scholar
  254. 254.
    I. Juhasz, “On closed discrete subspaces of product spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,17, No. 4, 219–223 (1969).Google Scholar
  255. 255.
    I. Juhasz, “Martin's Axiom solves Ponomarev's problem,” ibid.,18, No. 2, 71–74 (1970).Google Scholar
  256. 256.
    I. Juhasz, “Cardinal functions in topology,” Math. Centre Tracts, No. 34 (1971).Google Scholar
  257. 257.
    I. Juhasz, “On two problems of A. V. Arkhangel'skii,” Gen.Top.and Appl.,2, No. 3, 151–156 (1972).Google Scholar
  258. 258.
    I. Juhasz, “Nonstandard notes on the hyperspace,” Contrib. Nonstandard Anal., Amsterdam-London (1972), pp. 171–177.Google Scholar
  259. 259.
    I. Juhasz and K. Kunen, “On the weight of Hausdorff spaces,” Gen. Top. and Appl.,3, No. 1, 47–49 (1973).Google Scholar
  260. 260.
    I. Juhasz and M. Machover, “A note on nonstandard topology,” Indag. Math.,31, No. 5, 482–484 (1969).Google Scholar
  261. 261.
    I. Juhasz and S. Mrówka, “E-compactness and the Alexandrov duplicate,” Indag. Math.,73, No. 1, 26–29 (1970).Google Scholar
  262. 262.
    V. Kannan, “An extension that nowhere has the Frechet property,” Mich. Math. J.,20, No. 3, 225–234 (1973).Google Scholar
  263. 263.
    S. Kasahara, “Characterization of compactness and countable compactness,” Proc. Japan Acad.,49, No. 7, 523–524 (1973).Google Scholar
  264. 264.
    J. Keesling, “On the equivalence of normality and compactness in hyperspaces,” Pacific J. Math.,33, No. 3, 657–667 (1970).Google Scholar
  265. 265.
    H. J. Keisler, “Universal homogeneous Boolean algebras,” Mich. Math. J.,13, No. 2, 129–132 (1966).Google Scholar
  266. 266.
    H. J. Keisler and A. Tarski, “From accessible to inaccessible cardinals. Results holding for all accessible cardinal numbers and the problem of their extension to inaccessible ones,” Fund. Math.,53, No. 3, 225–308 (1964).Google Scholar
  267. 267.
    D. Kent and G. Richardson, “Minimal convergence spaces,” Trans. Amer. Math. Soc.,160, 487–499 (1971).Google Scholar
  268. 268.
    D. Kent and G. Richardson, “The decomposition series of a convergence space,” Czech. Math. J.,23, No. 3, 437–446 (1973).Google Scholar
  269. 269.
    A. P. Kombarov, “On closed projections,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,21, No. 6, 519–521 (1973).Google Scholar
  270. 270.
    F. Kost, “Wallman-type compactifications and products,” Proc. Amer. Math. Soc.,29, No. 3, 607–612 (1972).Google Scholar
  271. 271.
    F. Kost, “α-Point compactifications,” Port. Math.,32, Nos. 3–4, 133–137 (1973).Google Scholar
  272. 272.
    V. Koutnik, “On sequentially regular convergence spaces,” Czech. Math. J.,17, No. 2, 232–247 (1967).Google Scholar
  273. 273.
    K. Kunen, “On the compactification of the integers,” Notices Amer. Math. Soc.,17, No. 1, 299 (1970).Google Scholar
  274. 274.
    K. Kunen, “Ultrafilters and independent sets,” Trans. Amer. Math. Soc.,172, 299–306 (1972).Google Scholar
  275. 275.
    G. Kurepa, “La condition de Souslin et une propriété caractéristique des nombres reels,” Compt. Rend. Acad. Sci., Ser. A–B,231, 1113–1114 (1950).Google Scholar
  276. 276.
    G. Kurepa, “Sur une propriété caractéristique du continu lineaire et le problème de Souslin,” Publ. Inst. Math. Beograd,4, 97–108 (1952).Google Scholar
  277. 277.
    R. Lalitha, “A note in the lattice structure of T1 topologies on an infinite set,” Math. Stud.,35, No. 1, 29–33 (1969).Google Scholar
  278. 278.
    L. L. Larmore, “A connected countable Hausdorff space, Sα for every countable ordinalα,” Bol. Soc. Mat. Mex. Ser. II,17, 14–17 (1972).Google Scholar
  279. 279.
    R. Levy, “Strongly non-Blumberg's spaces,” Gen. Top. and Appl.,4, No. 2, 173–177 (1974).Google Scholar
  280. 280.
    A. H. Lightstone, “Infinitesimals,” Amer. Math. Monthly,79, No. 3, 242–251 (1972).Google Scholar
  281. 281.
    Chen Tung Ling, “Theα-closureαX of a topological space X,” Proc. Amer., Math. Soc.,22, No. 3, 620–624 (1969).Google Scholar
  282. 282.
    Chen Tung Ling, “An equivalent condition for the existence of a measurable cardinal,” ibid.,23, No. 3, 605–607 (1969).Google Scholar
  283. 283.
    A. Louveau, “Ultrafiltres absolus,” Semin. Choquet Fac. Sci. Paris,10, No. 1, 11/01–11/11 (1971).Google Scholar
  284. 284.
    F. W. Lozier, “A compactification of locally compact spaces,” Proc. Amer. Math. Soc.,31, No. 2, 577–579 (1972).Google Scholar
  285. 285.
    J. Mack, S. Morris, and E. Ordman, “Free topological groups and the projective dimension of a locally compact Abelian group,” ibid.,40, No. 1, 303–308 (1973).Google Scholar
  286. 286.
    K. Magill, “On the remainders of certain metric spaces,” Trans. Amer. Math. Soc.,160, 411–417 (1971).Google Scholar
  287. 287.
    J. Malitz, J. Mycielski, and W. Thron, “A remark on filters, ultrafilters and topologies,” Bull. Acad. Pol. Sci. Ser. Sci, Math. Astron. Phys.,22, No. 1, 47–48 (1974).Google Scholar
  288. 288.
    F. L. Marin, “A note on E-compact spaces,” Fund. Math.,76, No. 3, 195–206 (1972).Google Scholar
  289. 289.
    D. Martin and R. Solovay, “Internal Cohen extensions,” Ann. Math. Log.,2, No. 2, 143–178 (1970).Google Scholar
  290. 290.
    R. H. Marty, “m-adic spaces,” Acta Math. Acad. Sci. Hung.,22, Nos. 3–4, 441–447 (1972).Google Scholar
  291. 291.
    R. H. Marty, “k-R-Spaces,” Compos. Math.,25, No. 2, 149–152 (1972).Google Scholar
  292. 292.
    A. Mathias, “Solution of a problem of Choquet and Puritz,” Lect. Notes Math.,255, 204–210 (1972).Google Scholar
  293. 293.
    P. Meyer, “The Sorgenfrey topology is a join of orderable topologies,” Czech. Math. J.,23, No. 3, 402–403 (1973).Google Scholar
  294. 294.
    E. Michael, “Local compactness and Cartesian products of quotient maps and k-spaces,” Ann. Inst. Fourier,18, No. 2, 281–286 (1969).Google Scholar
  295. 295.
    E. Michael, “Bi-quotient maps and Cartesian products of quotient maps,” ibid., 287–302 (1969).Google Scholar
  296. 296.
    E. Michael, “A quintuple quotient quest,” Gen. Top. and Appl.,2, No. 2, 91–138 (1972).Google Scholar
  297. 297.
    E. Michael, “On k-spaces, kR-spaces and k(X),” Pacific J. Math.,47, No. 2, 487–498 (1973).Google Scholar
  298. 298.
    E. Michael, “Countably bi-quotient maps and A -spaces,” Lect. Notes Math.,375, 183–189 (1974).Google Scholar
  299. 299.
    E. Michael and A. Stone, “Quotients of the space of irrationals,” Pacific J. Math.,28, No. 3, 629–633 (1969).Google Scholar
  300. 300.
    J. Mioduszewski, “Remarks on Baire theorem for H-closed spaces,” Colloq. Math.,23, No. 1, 39–41 (1971).Google Scholar
  301. 301.
    A. Misra, “Some regular WallmanβX,” Indag. Math.,76, No. 3, 237–242 (1973).Google Scholar
  302. 302.
    S. Morris and H. Thompson, “Invariant metrics on free topological groups,” Bull. Austral. Math. Soc.,9, No. 1, 83–88 (1973).Google Scholar
  303. 303.
    S. Mrówka, “A property of Hewitt extensionvX of topological spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,6, No. 2, 95–96 (1958).Google Scholar
  304. 304.
    S. Mrówka, “On the unions of Q-spaces,” ibid., No. 6, 365–368 (1958).Google Scholar
  305. 305.
    S. Mrówka, “Compactness and product spaces,” Colloq. Math.,7, No. 1, 19–22 (1959).Google Scholar
  306. 306.
    S. Mrówka, “On E-compact spaces II,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,14, No. 11, 597–605 (1966).Google Scholar
  307. 307.
    S. Mrówka, “Further results of E-compact spaces I,” Acta Math.,120, Nos. 3–4, 161–185 (1968).Google Scholar
  308. 308.
    S. Mrówka, “Some comments on the class M of cardinals,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,17, No. 7, 411–414 (1969).Google Scholar
  309. 309.
    S. Mrówka, “Mazur theorem and m-adic spaces,” ibid.,18, No. 6, 299–305 (1970).Google Scholar
  310. 310.
    S. Mrówka, “Some comments on the author's example of a non-R-compact space,” ibid., No. 8, 443–448 (1970).Google Scholar
  311. 311.
    S. Mrówka, “Some strengthenings of the Ulam nonmeasurability condition,” Proc. Amer. Math. Soc.,25, No. 3, 704–711 (1970).Google Scholar
  312. 312.
    S. Mrówka, “Some consequences of Arkhangel'skii's theorem,” Bull. Acad. Pol. Sci. Ser. Math. Astron. Phys.,19, No. 5, 373–376 (1971).Google Scholar
  313. 313.
    S. Mrówka, “Recent results on E-compact spaces,” Lect. Notes Math.,278, 298–301 (1974).Google Scholar
  314. 314.
    J. Mycielski, “α-Incompactness of Nα,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,12, No. 8, 437–438 (1964).Google Scholar
  315. 315.
    S. Negrepontis, “The Stone space of the saturated Boolean algebras,” Trans. Amer. Math. Soc.,141, 515–527 (1969).Google Scholar
  316. 316.
    S. Negrepontis, “The growth of subuniform ultrafilters,” ibid.,175, 155–165 (1973).Google Scholar
  317. 317.
    R. Nillsen, “Compactification of products,” Mat. Casop.,19, No. 4, 316–323 (1969).Google Scholar
  318. 318.
    O. Njåstad, “On Wallman compactifications,” Math. Z.,91, No. 4, 267–276 (1966).Google Scholar
  319. 319.
    N. Noble, “Products with closed projections,” Trans. Amer. Math. Soc.,140, 381–391 (1969).Google Scholar
  320. 320.
    N. Noble, “Products with closed projections II,” ibid.,160, 169–183 (1971).Google Scholar
  321. 321.
    N. Noble, “Two examples on preimages of metric spaces,” Proc. Amer. Math. Soc.,36, No. 2, 586–590 (1972).Google Scholar
  322. 322.
    J. Novak, “On convergence spaces and their sequential envelopes,” Czech. Math. J.,15, No. 1, 74–100 (1965).Google Scholar
  323. 323.
    J. Novak, “On sequential envelopes defined by means of certain classes of continuous functions,” ibid.,18, No. 3, 450–456 (1968).Google Scholar
  324. 324.
    J. Novak, “On convergence groups,” ibid.,20, No. 3, 357–374 (1970).Google Scholar
  325. 325.
    P. Nyikos, “Prabir Roy's space Δ is not N-compact,” Gen. Top. and Appl.,3, No. 3. 197–210 (1973).Google Scholar
  326. 326.
    J. O'Connor, “Supercompactness of compact metric spaces,” Indag. Math.,73, No. 1, 30–34 (1970).Google Scholar
  327. 327.
    R. C. Olson, “Bi-quotient maps, countable bi-sequential spaces and related topics,” Gen. Top. and Appl.,4, No. 1, 1–28 (1974).Google Scholar
  328. 328.
    A. J. Ostaszewski, “Saturated structures and a theorem of Arkhangel'skii,” J. London Math. Soc.,6, No. 3, 453–458 (1973).Google Scholar
  329. 329.
    A. J. Ostaszewski, “On a question of Arkhangel'skii,” Gen. Top. and Appl.,3, No. 2, 93–95 (1973).Google Scholar
  330. 330.
    A. J. Ostaszewski, “On countable compact, perfectly normal spaces,” J. London Math. Soc. (to appear).Google Scholar
  331. 331.
    T. L. Pearson, “Some sufficient conditions for maximal resolvability,” Can. Math. Bull.,14, No. 2, 191–196 (1971).Google Scholar
  332. 332.
    J. Pelant, “Lattice on E-compact topological spaces,” Comment. Math. Univ. Carol.,14, No. 4, 719–738 (1973).Google Scholar
  333. 333.
    N. Piacun and Li Pi Su, “Wallman compact on E-completely regular spaces,” Pacific J. Math.,45, No. 1, 321–326 (1973).Google Scholar
  334. 334.
    R. Pierce, “Existence and uniqueness theorems for extensions of zero-dimensional compact metric spaces,” Trans. Amer. Math. Soc.,148, 1–21 (1970).Google Scholar
  335. 335.
    R. Pol, “Short proofs of two theorems on cardinality of topological spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. (to appear).Google Scholar
  336. 336.
    J. Porter and J. Thomas, “On H-closed and minimal Hausdorff spaces,” Trans. Amer. Math. Soc.,138, 159–170 (1969).Google Scholar
  337. 337.
    J. Porter and Ch. Votaw, “S(α) spaces and regular Haudorff extensions,” Pacific J. Math.,45, No. 1, 327–345 (1973).Google Scholar
  338. 338.
    J. Porter and Ch. Votaw, “H-Closed extensions I,” Gen. Top. and Appl.,3, No. 3, 211–224 (1973).Google Scholar
  339. 339.
    M. Powderly, “On expansions of Urysohn space to a regular space,” J. Reine und Angew. Math.,264, 182–183 (1973).Google Scholar
  340. 340.
    M. Powderly, “Some results on expansions for normal and completely normal space,” ibid.,266, 100–103 (1974).Google Scholar
  341. 341.
    W. Priestly, “A sequentially closed countably dense subset of Ic,” Proc. Amer. Math. Soc.,24, No. 2, 270–271 (1970).Google Scholar
  342. 342.
    K. Prikry, “Ultrafilters and almost disjoint sets,” Gen. Top. and Appl.,4, No. 2, 269–282 (1974).Google Scholar
  343. 343.
    T. Przymusinski, “A Lindelöf space X such that X2 is normal but not paracompact,” Fund. Math.,78, No. 3, 291–296 (1973).Google Scholar
  344. 344.
    T. Przymusinski and F. D. Tall, “The undecidability of the existence of a nonseparable normal Moore space satisfying the countable chain condition,” ibid.,85, No. 3, 291–297 (1974).Google Scholar
  345. 345.
    A. B. Raha, “Maximal topologies,” J. Austral. Math. Soc.,15, No. 3, 279–290 (1973).Google Scholar
  346. 346.
    M. Rajagopalan, “βN \ N \ {p} is not normal,” J.Indian Math. Soc.,36, Nos. 1–2, 173–176 (1972).Google Scholar
  347. 347.
    M. Rajagopalan and T. Soundararajan, “Some properties of topological groups,” Gen. Topol. and Relat. Mod. Anal. and Algebra: Proc. Kanpur Top. Conf. 1968, Publ. House Czech. Acad. Sci., Prague (1971), pp. 231–233.Google Scholar
  348. 348.
    Cz. Reda, “Straight lines in metric spaces,” Demonstr. Math.,6, No. 2, 809–819 (1973).Google Scholar
  349. 349.
    G. Richardson, “A Stone-Čech compactification for limit spaces,” Proc. Amer. Math. Soc.,25, 403–404 (1970).Google Scholar
  350. 350.
    G. Richardson and D. Kent, “Regular compactifications of convergence spaces,” ibid.,31, No. 2, 571–574 (1972).Google Scholar
  351. 351.
    A. Robinson, Nonstandard Analysis, North-Holland, Amsterdam (1966).Google Scholar
  352. 352.
    J. Roitman, “A space of small spread without the usual properties,” Proc. Amer. Math. Soc.,43, No. 1, 245–248 (1974).Google Scholar
  353. 353.
    A. C. Rooij, “The lattice of all topologies is complemented,” Can. J. Math.,20, No. 4, 805–807 (1968).Google Scholar
  354. 354.
    F. Rothberger, “On some problems of Hausdorff and Sierpinski,” Fund. Math.,35, No. 1, 29–46 (1948).Google Scholar
  355. 355.
    P. Roy, “The cardinality of first countable spaces,” Bull. Amer. Math. Soc.,77, No. 6, 1057–1059 (1971).Google Scholar
  356. 356.
    M. E. Rudin, “Partial orders on the types inβ N,” Trans. Amer. Math. Soc.,155, No. 2, 353–362 (1971).Google Scholar
  357. 357.
    M. E. Rudin, “The box product of countably many compact metric spaces,” Gen. Top. and Appl.,2, No. 4, 293–298 (1972).Google Scholar
  358. 358.
    M. E. Rudin, “A normal hereditarily separable non-Lindelöf space,” Ill. J. Math.,16, No. 4, 621–626 (1972).Google Scholar
  359. 359.
    M. E. Rudin, “A perfectly normal nonmetrizable manifold,” Notices Amer. Math. Soc.,22, No. 1, A208 (1975).Google Scholar
  360. 360.
    Sh. Sakaj, “A note on C-compact spaces,” Proc. Japan. Acad.,46, No. 9, 917–920 (1970).Google Scholar
  361. 361.
    V. Saks and R. Stephenson, “Products of m-compact spaces,” Proc. Amer. Math. Soc.,28, No. 1, 279–288 (1971).Google Scholar
  362. 362.
    C. Scarborough and A. Stone, “Products of nearly compact spaces,” Trans. Amer. Math. Soc.,124, No. 1, 131–147 (1966).Google Scholar
  363. 363.
    P. Schnare, “The topological complementation theorem à la Zorn,” Proc. Amer. Math. Soc.,35, No. 1, 285–286 (1972).Google Scholar
  364. 364.
    J. Shinoda, “Some consequences of Martin's Axiom and the negation of the continuum hypothesis,” Nagoya Math. J.,49, 117–125 (1973).Google Scholar
  365. 365.
    M. Singal and A. Mathur, “On nearly-compact spaces,” Boll. Unione Math. Ital.,2, No. 6, 702–710 (1969).Google Scholar
  366. 366.
    M. Singal and A. Mathur, “On minimal almost-regular spaces,” Glasnik Math.,6, No. 1, 179–185 (1971).Google Scholar
  367. 367.
    M. Singal and A. Mathur, “A note on minimal topological spaces,” Isr. J. Math.,12, No. 2, 204–206 (1972).Google Scholar
  368. 368.
    M. Singal and A. Mathur, “On nearly compact spaces II,” Boll. Unione Math. Ital.,9, No. 3, 670–678 (1974).Google Scholar
  369. 369.
    F. Siwiec, “Sequence-covering and countably bi-quotient mappings,” Gen. Top. and Appl.,1, No. 2, 143–154 (1971).Google Scholar
  370. 370.
    van der Slot, “Some properties related to compactness,” Math. Centre Tracts,19 (1968).Google Scholar
  371. 371.
    R. C. Solomon, “A type ofβ N with 0 relative types,” Fund. Math.,79, No. 3, 209–212 (1973).Google Scholar
  372. 372.
    R. Solovay, “On the cardinality of ∑21 sets of reals,” Found. Math., Berlin-Heidelberg-New York (1969), pp. 58–73.Google Scholar
  373. 373.
    R. Solovay and S. Tennenbaum, “Iterated Cohen extensions and Suslin's problem,” Ann. Math.,94, No. 2, 201–245 (1971).Google Scholar
  374. 374.
    A. K. Steiner, “The lattice of topologies. Structure and complementation,” Trans. Amer. Math. Soc.,122, No. 2, 379–398 (1966).Google Scholar
  375. 375.
    A. K. Steiner, “Complementation in the lattice of T1-topologies,” Proc. Amer. Math. Soc.,17, No. 4, 884–886 (1966).Google Scholar
  376. 376.
    A. K. Steiner and E. F. Steiner, “A T1-complement for the reals,” ibid.,19, No. 1, 177–179 (1968).Google Scholar
  377. 377.
    A. K. Steiner and E. F. Steiner, “Products of compact metric spaces are regular Wallman,” Indag. Math.,30, No. 4, 428–430 (1968).Google Scholar
  378. 378.
    A. K. Steiner and E. F. Steiner, “Wallman and z-compactifications,” Duke Math. J.,35, No. 2, 269–275 (1968).Google Scholar
  379. 379.
    A. K. Steiner and E. F. Steiner, “On countable multiple point compactifications,” Fund. Math.,65, No. 2, 133–137 (1969).Google Scholar
  380. 380.
    A. K. Steiner and E. F. Steiner, “Relative types of points inβ N\N,” Trans. Amer. Math. Soc.,160, No. 3, 279–286 (1973).Google Scholar
  381. 381.
    E. F. Steiner, “Normal families and completely regular spaces,” Duke Math. J.,33, No. 4, 743–745 (1966).Google Scholar
  382. 382.
    E. F. Steiner, “Wallman spaces and compactifications,” Fund. Math.,61, No. 3, 295–304 (1968).Google Scholar
  383. 383.
    E. F. Steiner and A. K. Steiner, “Topologies with T1-complements,” ibid., No. 1, 23–28 (1967).Google Scholar
  384. 384.
    R. M. Stephenson, “Product spaces for which the Stone-Weierstrass theorem holds,” Proc. Amer. Math. Soc.,21, No. 2, 284–288 (1969).Google Scholar
  385. 385.
    R. M. Stephenson, “A countable minimal Urysohn space is compact,” ibid.,22, No. 3, 625–626 (1969).Google Scholar
  386. 386.
    R. M. Stephenson, “Products of minimal Urysohn spaces,” Duke Math. J.,38 No. 4, 703–707 (1971).Google Scholar
  387. 387.
    R. M. Stephenson, “Discrete subsets of perfectly normal spaces,” Proc. Amer. Math. Soc.,34, No. 2, 605–608 (1972).Google Scholar
  388. 388.
    R. M. Stephenson, “Product spaces and the Stone-Weierstrass theorem,” Gen. Top. and Appl.,3, No. 1, 77–79 (1973).Google Scholar
  389. 389.
    A. H. Stone, “Nonseparable Borel sets II,” Gen. Top. and Appl.,2, No. 3, 249–270 (1972).Google Scholar
  390. 390.
    K. D. Stroyan, “Additional remarks on the theory of monads,” Contrib. Nonstandard Anal., Amsterdam-London (1972), pp. 245–259.Google Scholar
  391. 391.
    F. Tall, “A counterexample in the theories of compactness and of metrization,” Indag. Math.,35, No. 5, 471–474 (1973).Google Scholar
  392. 392.
    F. Tall, “P-Points inβ N\N, normal nonmetrizable Moore spaces, and other problems of Hausdorff,” Lect. Notes Math.,378, 501–512 (1974).Google Scholar
  393. 393.
    Y. Tanaka, “On sequential spaces,” Sci. Repts. Tokyo Kyoki Daigaku,A-11, Nos. 275–285, 68–72 (1971).Google Scholar
  394. 394.
    S. Tennenbaum, “Suslin's problem,” Proc. Nat. Acad. Sci. USA,59, No. 1, 60–63 (1968).Google Scholar
  395. 395.
    B. V. Thomas, “Free topological groups,” Lect. Notes Math.,378, 512–524 (1974).Google Scholar
  396. 396.
    J. P. Thomas, “Maximal connected topologies,” J. Austral. Math. Soc.,8, No. 4, 700–705 (1968).Google Scholar
  397. 397.
    W. Thron and S. Zimmerman, “A characterization of order topologies by means of minimal T0-topologies,” Proc. Amer. Math. Soc.,27, No. 1, 161–167 (1971).Google Scholar
  398. 398.
    Hing Tong, “Nonexistence of certain topological expansions,” Ann. Math. Pura ed Appl.,86, 43–45 (1970).Google Scholar
  399. 399.
    M. Ulmer, “Products of weakly ℵ-compact spaces,” Trans. Amer. Math. Soc.,170, 279–284 (1972).Google Scholar
  400. 400.
    R. Valent, “Every lattice is embeddable in the lattice of T1-topologies,” Colloq. Math.,28, No. 1, 27–28 (1973).Google Scholar
  401. 401.
    R. Valent and R. Larrson, “Basic intervals in the lattice of topologies,” Duke Math. J.,39, No. 3, 401–411 (1972).Google Scholar
  402. 402.
    J. E. Vayghan, “Some recent results in the theory of [a, b]-compactness,” Lect. Notes Math.,378, 534–550 (1974).Google Scholar
  403. 403.
    A. Verbeek, “Superextensions of topological spaces,” Math. Centre Tracts,41 (1972).Google Scholar
  404. 404.
    A. Verbeek and A. Kroonenberg, “Minimal cotopologies,” Nieuw Arch. Wisk.,18, No. 2, 162–164 (1970).Google Scholar
  405. 405.
    G. Viglino, “A co-topological application to minimal spaces,” Pacific J. Math.,27, No. 1, 197–200 (1968).Google Scholar
  406. 406.
    G. Viglino, “C-Compact spaces,” Duke Math. J.,36, No. 4, 761–764 (1969).Google Scholar
  407. 407.
    H. de Vries, Compact Spaces and Compactifications. An Algebraic Approach, Assen, the Netherlands (1962).Google Scholar
  408. 408.
    W. Waliszewski, “A remark on a certain lemma about metric spaces,” Demonstr. Math.,4, No. 3, 185–188 (1972).Google Scholar
  409. 409.
    R. C. Walker, The Stone -Čech Compactification, Springer, Berlin (1974).Google Scholar
  410. 410.
    H. M. Warren, “Properties of Stone -Čech compactifications of discrete spaces,” Proc. Amer. Math. Soc.,33, No. 2, 599–606 (1972).Google Scholar
  411. 411.
    F. Wattenberg, “Nonstandard topology and extensions systems for infinite points,” J. Symb. Log.,36, No. 3, 464–476 (1971).Google Scholar
  412. 412.
    D. Weddington, “On k-spaces,” Proc. Amer. Math. Soc.,22, No. 3, 635–638 (1969).Google Scholar
  413. 413.
    S. W. Willard, “Functionally compact spaces, C-compact spaces, and mappings of minimal Hausdorff spaces,” Pacific J. Math.,38, No. 1, 267–272 (1971).Google Scholar
  414. 414.
    G. Woods, “Co-absolutes of remainders of Stone -Čech compactifications,” ibid.,37, No. 2, 545–560 (1971).Google Scholar
  415. 415.
    G. Woods, “Some ℵ0-bounded subsets of Stone -Čech compactifications,” Isr. J. Math.,9, No. 2, 250–256 (1971).Google Scholar
  416. 416.
    O. Wyler, “The Stone -Čech compactification for limit spaces,” Notices Amer. Math. Soc.,15, 169 (1968).Google Scholar
  417. 417.
    O. Wyler, “Filter space, monads, regularity, completions,” Lect. Notes Math.,378, 591–637 (1974).Google Scholar
  418. 418.
    A. Zame, “A note on Wallman spaces,” Proc. Amer. Math. Soc.,22, No. 1, 141–144 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • V. I. Malykhin
  • V. I. Ponomarev

There are no affiliations available

Personalised recommendations