Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theory of proofs (arithmetic and analysis)

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    G. Gentzen, “Consistency of pure number theory,” in: The Mathematical Theory of Logical Deduction [in Russian], Nauka, Moscow (1967).

  2. 2.

    K. Gödel, “An as yet unemployed extension of the finitary point of view,” in: The Mathematical Theory of Logical Deduction [in Russian], Nauka, Moscow (1967).

  3. 3.

    E. A. Derevyankina, “Some questions on the completeness of arithmetic,” Sib. Mat. Zh.,15, No. 2, 299–317 (1974).

  4. 4.

    A. G. Dragalin, “Computability of primitive recursive terms of finite type and primitive recursive realization,” in: Zap. Nauch. Semin. Leningr. Otd. Matem. Inst. Akad. Nauk SSSR,8, 32–45 (1968).

  5. 5.

    A. G. Dragalin, “The use of classical calculi for determination of constructive truth,” Vestn. Mosk. Univ. Mat. Mekh., No. 2, 25–29 (1972).

  6. 6.

    A. G. Dragalin, “Completeness of arithmetic with a constructive rule of infinite induction,” in: Theory of Algorithms and Mathematical Logic [in Russian], Moscow (1974), pp. 14–33.

  7. 7.

    A. G. Dragalin, “Constructive models for theories of intuitionistic choice sequences,” in: Investigations on the Formalization of Languages and on Nonclassical Logics [in Russian], Nauka, Moscow (1974), pp. 214–252.

  8. 8.

    Yu. L. Ershov, “Models G of the theory BR,” Dokl. Akad. Nauk SSSR,217, No. 5, 1004–1006 (1974).

  9. 9.

    P. J. Cohen, Set Theory and the Continuum Hypothesis, W. A. Benjamin (1966).

  10. 10.

    A. M. Levin, “Some applications of truth definitions,” Vestn. Mosk. Univ. Mat. Mekh., No. 5, 11–17 (1973).

  11. 11.

    A. A. Markov, “The language я0,” Dokl. Akad. Nauk SSSR,214, No. 1, 40–43 (1974).

  12. 12.

    A. A. Markov, “The language я1,” ibid., No. 2, 279–282 (1974).

  13. 13.

    A.A. Markov, “The language я2,” ibid., No. 3, 513–516 (1974).

  14. 14.

    A. A. Markov, “The language я3,” ibid., No. 4, 765–768 (1974).

  15. 15.

    A. A. Markov, “The language я4, я5,...,” ibid., No. 5, 1031–1034 (1974).

  16. 16.

    A. A. Markov, “The language яω,” ibid., No. 6, 1262–1264 (1974).

  17. 17.

    A.A. Markov, “The language яω 1,” ibid.,215, No. 1, 57–60 (1974).

  18. 18.

    Yu. V. Matiyasevich, “Diophantine representation of enumerable predicates,” Izv. Akad. Nauk SSSR Ser. Mat.,35, No. 1, 3–30 (1971).

  19. 19.

    G. E. Mints, “Quantifier-free and one-quantifier systems,” Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,20, 115–133 (1971).

  20. 20.

    G. E. Mints, “Exact estimates of provability by transfinite induction in initial segments of arithmetic,” ibid., 133–144 (1971).

  21. 21.

    G. E. Mints, “E-theorems,” ibid.,40, 110–118 (1974).

  22. 22.

    N. N. Nepeivoda, “A new notion of predicative truth and definability,” Mat. Zametki,13, No. 5, 735–745 (1973).

  23. 23.

    N. N. Nepeivoda, “The relation between predicative meaning and intuitive universality,” Dokl. Akad. Nauk SSSR,212, No. 1, 40–43 (1973).

  24. 24.

    N. N. Nepeivoda, “The language Δ with intuitionistic connectives,” ibid.,220, No. 1, 41–43 (1975).

  25. 25.

    V. E. Plisko, “A formal system connected with realizability,” in: The Theory of Algorithms and Mathematical Logic [in Russian], Moscow (1974), pp. 148–158.

  26. 26.

    D. van Dalen, Lectures on Intuitionism, Lecture Notes in Math.,337, 1–94 (1973).

  27. 27.

    D. van Dalen and A. Troelstra, “Projections of lawless sequences,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 163–186.

  28. 28.

    J. Diller and W. Nahm, “Einer Variant zur Dialectica-Interpretation der Heyting-Arithmetik endlichen Typen,” Arch. Math. Logik und Grundlagenforschung,16, Nos. 1–2, 49–66 (1974).

  29. 29.

    J. Diller and K. Schütte, “Simultane Rekursionen in der Theorie der Funktionale endlichen Typen,” ibid.,14, Nos. 1–2, 69–74 (1971).

  30. 30.

    S. Feferman, “Systems of predicative analysis. II,” J. Symbolic Logic,33, No. 2, 199–220 (1968).

  31. 31.

    S. Feferman, “Hereditary replete functionals over ordinals,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 289–302.

  32. 32.

    S. Feferman, “Formal theories for transfinite iterations of generalized inductive definitions and some subsystems of analysis,” in: ibid., pp. 303–326.

  33. 33.

    S. Feferman, “Ordinals and functionals in proof theory,” in: Actes Congr. Int. Math. 1970, Vol.1, Paris (1971), pp. 229–233.

  34. 34.

    S. Feferman, “Infinitary properties, local functors, and systems of ordinal functions,” Lecture Notes in Math.,255, 63–97 (1972).

  35. 35.

    H. Friedman, “Iterated inductive definitions and ∑ 2 1 -AC,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 435–442.

  36. 36.

    H. Friedman, “Some applications of Kleene's methods for intuitionistic systems,” Lecture Notes in Math.,337, 113–170 (1973).

  37. 37.

    H. Gerber, “Brouwer's bar theorem and a system of ordinal notations,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 327–338.

  38. 38.

    J.-Y. Girard, “Une extension de l'interpretation de Gödel a l'analyse et son application a l'elimination des coupures dans l'analyse et la theorie des types,” Proc. Second Scand. Logic Sympos., Amsterdam-London (1971), pp. 63–92.

  39. 39.

    J.-Y. Girard, “Quelques resultats sur les interpretations fonctionelles,” Lecture Notes in Math.,337, 232–252 (1973).

  40. 40.

    N. D. Goodman, “A theory of constructions equivalent to arithmetic,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 101–120.

  41. 41.

    N. D. Goodman, “The arithmetic theory of constructions,” Lecture Notes in Math.,337, 274–298 (1973).

  42. 42.

    N. D. Goodman, “The faithfulness of the interpretation of arithmetic in the theory of constructions,” J. Symbolic Logic,38, 453–459 (1973).

  43. 43.

    N. D. Goodman and J. Myhill, “The formalization of Bishop's constructive mathematics,” Lecture Notes in Math.,274, 83–96 (1972).

  44. 44.

    J. R. Hindley, B. Lercher, and J. P. Seldin, Introduction to Combinatory Logic, London Math. Soc. Lecture Note Ser., No. 7 (1972).

  45. 45.

    W.A. Howard, “Functional interpretation of bar induction by bar recursion,” Compositio Math.,20, 107–124 (1970).

  46. 46.

    W. A. Howard, “Assignment of ordinals to terms for primitive recursive functionals of finite types,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 443–458.

  47. 47.

    W. A. Howard, “A system of abstract constructive ordinals,” J. Symbolic Logic,37, No. 2, 355–374 (1972).

  48. 48.

    W. A. Howard, “Hereditary majorizable functionals of finite type,” Lecture Notes in Math.,344, 454–461 (1973).

  49. 49.

    W. A. Howard and G. Kreisel, “Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis,” J. Symbolic Logic,31, 325–358 (1966).

  50. 50.

    D. Isles, “Regular ordinals and normal forms,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 339–361.

  51. 51.

    R. G. Jeroslov, “Redundancies in the Hibert-Bernays derivability conditions for Gödel's second incompleteness theorem,” J. Symbolic Logic,38, No. 3, 359–367 (1973).

  52. 52.

    H. R. Jervell, “A normal form in first order arithmetic,” Proc. Second Scand. Logic Sympos., Amsterdam-London (1971), pp. 93–108.

  53. 53.

    A. Kino, “Formalization of the theory of ordinal diagrams of infinite order,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 363–376.

  54. 54.

    S. C. Kleene, “Formalized recursive functional and formalized realizability,” Mem. Amer. Math. Soc., 89 (1969).

  55. 55.

    S. C. Kleene, “Realizability, a retrospective survey,” Lecture Notes in Math.,337, 95–112 (1973).

  56. 56.

    G. A. Kreisel, “On the interpretation of nonfinitist proofs, I,” J. Symbolic Logic,16, 241–267 (1951).

  57. 57.

    G. A. Kreisel, “A survey of proof theory, I,” ibid.,33, 321–388 (1968).

  58. 58.

    G. A. Kreisel, “Church's thesis: a kind of reducibility axiom for constructive mathematics,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 121–150.

  59. 59.

    G. A. Kreisel, “Principles of proof and ordinals implicit in given concepts,” ibid., 489–516.

  60. 60.

    G. A. Kreisel, “A survey of proof theory, II,” Proc. Second Scand. Logic Sympos., Amsterdam-London (1971), pp. 109–170.

  61. 61.

    G. A. Kreisel and G. Takeuti, “Formally self-referential propositions for cut-free classical analysis and related systems,” Rozpr. Mat., No. 118 (1974).

  62. 62.

    G. A. Kreisel and A. S. Troelstra, “Formal systems for some branches of intuitionistic analysis,” Ann. Math. Logic,1, No. 3, 229–387 (1970).

  63. 63.

    H. Levitz, “On the relationship between Takeuti's ordinal diagramsO(n) and Schütte's system of ordinal notations ∑(n),” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 377–405.

  64. 64.

    H. Levitz, “A characterization of the Veblen-Schütte functions by means of functionals,” Comment. Math. Helv.,48, No. 3, 382–393 (1971).

  65. 65.

    H. Levitz and K. Schütte, “A characterization of Takeuti's ordinal diagrams of finite order,” Arch. math. Logik und Grundlagenforschung,14, Nos. 1–2, 75–97 (1971).

  66. 66.

    M. Luckhardt, Extensional Gödel Functional Interpretation. A Consistency Proof of Classical Analysis, Springer, Berlin (1973).

  67. 67.

    P. Martin-Löf, “Hauptsatz for the intuitionistic theory of iterated inductive definitions,” Proc. Second Scand. Logic Sympos., Amsterdam-London (1971), pp. 179–216.

  68. 68.

    P. Martin-Löf, “Hauptsatz for the theory of species,” ibid., pp. 217–233.

  69. 69.

    P. Martin-Löf, “Infinite terms and a system of natural deduction,” Compositio Math.,24, No. 1, 93–103 (1972).

  70. 70.

    J. Myhill, “A note on indicator functions,” Proc. Amer. Math. Soc.,39, No. 1, 181–183 (1973).

  71. 71.

    H. Osswald, “Ein syntaktischer Beweis für die Zulässigkeit der Schnittregel in Kalkül von Schütte für die intuitionistische Typenlogik,” Manuscr. Math.,8, No. 3, 243–249 (1973).

  72. 72.

    C. Parsons, “On a number-theoretic choice schema and its relation to induction,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 459–473.

  73. 73.

    C. Parsons, “On n-quantifier induction,” J. Symbolic Logic,37, No. 4, 466–482 (1972).

  74. 74.

    H. Pfeiffer, “Vergleich zweier Bezeichnungssysteme für Ordinalzahlen,” Arch. math. Logik und Grundlagenforschung,15, Nos. 1–2, 41–56 (1972).

  75. 75.

    H. Pfeiffer, “Über zwei Bezeichnungssysteme für Ordinalzahlen,” ibid.,16, Nos. 1–2, 23–36 (1974).

  76. 76.

    W. Pohlers, “Ein starker Normalisationssatz für die intuitionistische Typentheorie,” Manuscr. Math.,8, No. 4, 371–387 (1973).

  77. 77.

    D. Prawitz, “Completeness and hauptsatz for second order logic,” Teoria,33, No. 3, 246–258 (1967).

  78. 78.

    D. Prawitz, “Ideas and results in proof theory,” Proc. Second Scand. Logic Sympos., Amsterdam-London (1971), pp. 235–307.

  79. 79.

    B. van Rootselaar, “On subjective mathematical assertions,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 187–196.

  80. 80.

    B. Scarpellini, “On cut elimination in intuitionistic systems of analysis,” ibid., pp. 271–285.

  81. 81.

    B. Scarpellini, Proof Theory and Intuitionistic Systems, Lecture Notes in Math.,212 (1971).

  82. 82.

    B. Scarpellini, “Induction and transfinite induction in intuitionistic systems,” Ann. Math. Logic,4, No 2, 173–227 (1972).

  83. 83.

    B. Scarpellini, “A formally constructive model for bar recursion of higher types,” Z. Math. Logik und Grundl. Math.,18, No. 4, 321–383 (1972).

  84. 84.

    B. Scarpellini, “On bar induction of higher types for decidable predicates,” Ann. Math. Logic,5, No. 2, 77–163 (1973).

  85. 85.

    B. Scarpellini, “Disjunctive properties of intuitionistic systems,” Arch. Math. Logik und Grundlagenforschung,16, Nos. 3–4, 147–158 (1974).

  86. 86.

    K. Schütte, “Predicative well-orderings,” in: Formal Systems and Recursive Functions, Amsterdam (1965), pp. 280–303.

  87. 87.

    H. Schwichtenberg, “Beweistheoretische Charakterisierung einer Erweiterung der Grzegorczyk-Hier-archie,” Arch. Math. Logik und Grundlagenforschung,15, Nos. 3–4, 129–145 (1972).

  88. 88.

    C. Spector, “Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics,” in: Recursive Function Theory, Amer. Math. Soc., Providence (1962), pp. 1–27.

  89. 89.

    J. Staples, “Combinator realizability of constructive finite type,” Lecture Notes in Math.,337, 253–273 (1973).

  90. 90.

    S. Stenlund, Combinators,λ-Terms, and Proof Theory, Reidel, Dordrecht Neth. (1972).

  91. 91.

    W. W. Tait, “Infinitely long terms of transfinite type,” in: Formal Systems and Recursive Functions, Amsterdam (1965), pp. 176–185.

  92. 92.

    W. W. Tait, “A nonconstructive proof of Gentzen's hauptsatz for second order predicate logic,” Bull. Amer. Math. Soc.,72, No. 6, 980–983 (1966).

  93. 93.

    W. W. Tait, “Intensional interpretations of functionals of finite type, I,” J. Symbolic Logic,32, No. 2, 198–212 (1967).

  94. 94.

    W. W. Tait, “Applications of the cut elimination theorems to some subsystems of classical analysis,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 475–488.

  95. 95.

    W. W. Tait, “Normal form theorem for bar-recursive functions of finite type,” Proc. Second Scand. Logic Sympos., Amsterdam-London (1971), pp. 353–367.

  96. 96.

    Moto-o Takahashi, “A proof of cut-elimination theorem in simple type theory,” J. Math. Soc. Japan,19, No. 4, 399–410 (1967).

  97. 97.

    G. Takeuti, “Consistency proofs of subsystems of classical analysis,” Ann. Math.,86, No. 2, 299–348 (1967).

  98. 98.

    G. Takeuti and M. Yasugi, “The ordinals of the systems of second order arithmetic with the provably Δ 2 1 -comprehension axiom and with the Δ 2 1 -comprehension axiom, respectively,” Jap. J. Math.,41, No. 1, 1–67 (1973).

  99. 99.

    A. S. Troelstra, “Notions of realizability for intuitionistic arithmetic and intuitionistic arithmetic in all finite types,” Proc. Second Scand. Logic Sympos., Amsterdam-London (1971), pp. 369–405.

  100. 100.

    A. S. Troelstra, “Notes on intuitionistic second order arithmetic,” Lecture Notes in Math.,337, 171–205 (1973).

  101. 101.

    A. S. Troelstra, “Intuitionistic formal systems,” ibid.,344, 1–96 (1973).

  102. 102.

    A. S. Troelstra, “Models and computability,” ibid.,344, 97–174 (1973).

  103. 103.

    A. S. Troelstra, “Realizability and functional interpretations,” ibid.,344, 175–274 (1973).

  104. 104.

    A. S. Troelstra, “Normalization theorems for systems of natural deduction,” ibid.,344, 275–323 (1973).

  105. 105.

    A. S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Math.,344 (1973).

  106. 106.

    T. Uesu, “Two formal systems of simple type theory with type variables,” Comment. Math. Univ. St. Pauli,19, No. 1, 13–46 (1971).

  107. 107.

    T. Uesu, “Simple type theory with constructive infinitely long expressions,” ibid.,19, No. 2, 131–163 (1971).

  108. 108.

    R. P. Vesley, “A palatable substitute for Kripke's schema,” in: Intuitionism and Proof Theory, Amsterdam (1970), pp. 197–207.

  109. 109.

    R. P. Vesley, “Choice sequences and Markov's principle,” Compositio Math.,24, No. 1, 33–53 (1972).

  110. 110.

    M. Yasugi, “Cut elimination theorem for second order arithmetic with π 1 1 -comprehension axiom and theω-rule,” J. Math. Soc. Japan,22, No. 3, 308–324 (1970).

  111. 111.

    J. I. Zucker, “Iterated inductive definitions, trees, and ordinals,” Lecture Notes in Math.,344, 392–453 (1973).

  112. 112.

    J. I. Zucker, “The correspondence between cut-elimination and normalization,” Ann. Math. Logic,7, No. 1, 1–112 (1974).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki (Algebra, Topologiya, Geometriya), Vol. 13, pp. 5–49, 1975.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mints, G.E. Theory of proofs (arithmetic and analysis). J Math Sci 7, 501–531 (1977). https://doi.org/10.1007/BF01084980

Download citation