Journal of Soviet Mathematics

, Volume 8, Issue 2, pp 219–228 | Cite as

Hamiltonian systems connected with the Dirac equation

  • L. A. Takhtadzhyan


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. S. Frolov, “The inverse problem for the Dirac system on all axes,” Dokl. Akad. Nauk SSSR,207, No. 1, 44–47 (1972).Google Scholar
  2. 2.
    C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett.,19, 1095–1097 (1967).Google Scholar
  3. 3.
    R. M. Miura, C. S. Gardner, and M. D. Kruskal, “Korteweg-de Vries equation and generalizations, II. Existence of conservation laws and constants of motion,” J. Math. Phys.,9, No. 8, 1204–1209 (1968).Google Scholar
  4. 4.
    M. D. Kruskal, R. M. Miura, C. S. Gardner, and N. J. Zabusky, “Korteweg-de Vries equation and generalizations, V. Uniqueness and nonexistence of polynomial conservation laws,” J. Math. Phys.,11, No. 3, 952–960 (1970).Google Scholar
  5. 5.
    V. E. Zakharov and L. D. Faddeev, “Korteweg-de Vries equation, a completely integrable Hamiltonian system,” Funkts. Anal. Prilozhen.,5, No. 4, 18–27 (1971).Google Scholar
  6. 6.
    P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Comm. Pure Appl. Math.,21, 467–490 (1968).Google Scholar
  7. 7.
    V. E. Zakharov and A. B. Shabat, “Point theory of two-dimensional self-focusing and one-dimensional automodular wave in a nonlinear medium,” Zh. Eksp. Teor Fiz.,61, 118–125 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • L. A. Takhtadzhyan

There are no affiliations available

Personalised recommendations