Geometry of nonlinear differential equations
Article
- 147 Downloads
- 20 Citations
Abstract
The paper contains a survey of certain contemporary concepts and results connected with the geometric foundations of the theory of nonlinear partial differential equations. At the base of the account is situated the geometry and analysis on jet spaces, finite and infinite.
Keywords
Differential Equation Partial Differential Equation Nonlinear Differential Equation Nonlinear Partial Differential Equation Contemporary Concept
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Literature cited
- 1.V. I. Arnol'd, “Contact manifolds, Legendre mappings, and singularities of wave fronts,” Lisp. Mat. Nauk,29, No. 4, 153–154 (1974).Google Scholar
- 2.V. I. Bliznikas and Z. Yu. Lupeikis, “The geometry of differential equations,” in: Algebra. Topology. Geometry [in Russian], Vol. 11, Itogi Nauki i Tekhniki VINITI Akad. Nauk SSSR, Moscow (1974), pp. 209–259.Google Scholar
- 3.J. M. Boardman, “Singularities of differentiable mappings,” in: Singularities of Differentiate Mappings [Russian translation], Mir, Moscow (1968), pp. 102–152.Google Scholar
- 4.A. M. Vinogradov, “The algebra of the logic of the theory of linear differential operators,” Dokl. Akad. Nauk SSSR,205, No. 5, 1025–1028 (1972).Google Scholar
- 5.A. M. Vinogradov, “Multivalued solutions and the principle of classification of nonlinear differential equations,” Dokl. Akad. Nauk SSSR,210, No. 1, 11–14 (1973).Google Scholar
- 6.A. M. Vinogradov, “Theory of symmetry for nonlinear partial differential equations,” Moscow University (1974).Google Scholar
- 7.A. M. Vinogradov, “On the algebro-geometric foundations of the Lagrangian theory of fields,” Dokl. Akad. Nauk SSSR,236, 284–287 (1977).Google Scholar
- 8.A. M. Vinogradov, “A spectral sequence connected with nonlinear differential equations, and the algebro-geometric foundations of the Lagrangian theory of fields with constraints,” Dokl. Akad. Nauk SSSR,238, No. 5, 1028–1031 (1978).Google Scholar
- 9.A. M. Vinogradov, “Hamiltonian structures in the theory of fields,” Dokl. Akad. Nauk SSSR,241, No. 1, 18–21 (1978).Google Scholar
- 10.A. M. Vinogradov and E. M. Vorob'ev, “Application of symmetries in finding exact solutions of the Zabolotskaya-Khokhlov equation,” Akust. Zh.,22, No. 1, 23–27 (1976).Google Scholar
- 11.A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin, Application of Nonlinear Equations to Civil Aviation [in Russian], Mosk. Inst. Inzh. Grazhd. Aviatsii, Moscow (1977).Google Scholar
- 12.A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin, Geometry of Jet-Spaces and Nonlinear Differential Equations [in Russian], Mosk. In-t Elektr. Mash., Moscow (1979).Google Scholar
- 13.A. M. Vinogradov and B. A. Kupershmidt, “Structure of Hamiltonian mechanics,” Usp. Mat. Nauk,32, No. 4, 175–236 (1977).Google Scholar
- 14.M. M. Vinogradov, “On Spencer and de Rham algebraic cohomology,” Dokl. Akad. Nauk SSSR,242, No. 5, 989–992 (1978).Google Scholar
- 15.I. M. Gel'fand and L. A. Dikii, “Asymptotics of the resolvent of Sturm-Liouville equations and the algebra of Korteweg-de Vries equations,” Usp. Matem. Nauk,30, No. 5, 67–100 (1975).Google Scholar
- 16.V. M. Zakalyukin, “On Lagrangian and Legendre singularities,” Funkts. Anal. Prilozhen.,10, No. 1, 26–36 (1976).Google Scholar
- 17.N. Kh. Ibragimov and R. D. Anderson, “Groups of Lie -Baecklund tangent transformations,” Dokl. Akad. Nauk SSSR,227, No. 3, 539–542 (1976).Google Scholar
- 18.E. Cartan, Exterior Differential Systems and Their Geometric Applications [Russian translation], Moscow University (1962).Google Scholar
- 19.A. P. Krishchenko, “On the structure of singularities of solutions of quasilinear equations,” Usp. Mat. Nauk,31, No. 3, 219–220 (1976).Google Scholar
- 20.A. P. Krishchenko, “On deviations of R-manifolds,” Vestn. Mosk. Univ. Mat., Mekh., No. 1, 17–20 (1977).Google Scholar
- 21.B. A. Kupershmidt, “On the geometry of jet manifolds,” Usp. Mat. Nauk,30, No. 5, 211–212 (1975).Google Scholar
- 22.B. A. Kupershmidt, “Lagrangian formalism in the calculus of variations,” Funkts. Anal. Prilozhen.,10, No. 2, 77–78 (1976).Google Scholar
- 23.V. V. Lygachin, “Local classification of first order nonlinear partial differential equations,” Usp. Mat. Nauk,30, No. 1, 101–171 (1975).Google Scholar
- 24.V. V. Lychagin, “On sufficient orbits of the group of contact diffeomorphisms,” Mat. Sb.,104, No. 2, 248–270 (1977).Google Scholar
- 25.V. V. Lychagin, “Contact geometry and second order linear differential equations,” Usp. Mat. Nauk,34, No. 1, 137–165 (1979).Google Scholar
- 26.Yu. I. Manin, “Algebraic aspects of nonlinear differential equations,” in: Contemporary Problems of Mathematics [in Russian], Vol. 11, Itogi Nauki i Tekhniki VINITI Akad. Nauk SSSR, Moscow (1978), pp. 5–152.Google Scholar
- 27.L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
- 28.L. V. Ovsyannikov and N. Kh. Ibragimov, “Group analysis of the differential equations of mechanics,” in: General Mechanics [in Russian], Vol. 2, Itogi Nauki i Tekhniki VINITI Akad. Nauk SSSR, Moscow (1975), pp. 5–52.Google Scholar
- 29.P. K. Rashevskii, Geometric Theory of Partial Differential Equations [in Russian], Gostekhizdat, Moscow-Leningrad (1947).Google Scholar
- 30.D. Spencer, “Overdetermined systems of linear partial differential equations,” Matematika,14, No. 2, 66–90; No. 3, 99–126 (1970).Google Scholar
- 31.A. Andreotti, C. D. Hill, S. Lojasiewicz, and B. MacKichan, “Complexes of differential operators. The Mayer-Vietoris sequence,” Invent. Math.,35, No. 1, 43–86 (1976).Google Scholar
- 32.E. Cartan, “Sur certaines expressions differentielles et le probleme de Pfaff,” Ann. Sci. Ecole Norm. Super., Ser. 3,16, 239–332 (1899).Google Scholar
- 33.E. Cartan, “Sur l'integration des systemes d'equations aux differentielles totales,” Ann. Sci. Ecole Norm. Super., Ser. 3,18, 241–311 (1901).Google Scholar
- 34.P. Dedecker, “On the generalisation of symplectic geometry to multiple integrals in the calculus of variations,” Lect. Notes Math.,570, 395–456 (1977).Google Scholar
- 35.C. Ehresmann, “Introduction a la theorie des structures infinitesimales et des pseudo-groupes de Lie,” in: Coloq.Internat. Centre Nat. Rech. Scient. 52 Strasbourg, 1953, Paris (1953), pp. 97–110.Google Scholar
- 36.A. R. Forsyth, Theory of Differential Equations, Dover, New York (1960).Google Scholar
- 37.H. Goldschmidt, “Existence theorems for analytic partial differential equations,” Ann. Math.,86, No. 2, 246–270 (1967).Google Scholar
- 38.H. Goldschmidt, “Integrability criteria for systems of nonlinear partial differential equations,” J. Different. Geom.,1, No. 3, 269–307 (1967).Google Scholar
- 39.H. Goldschmidt, “Prolongations of linear partial differential equations. I. A conjecture of E. Cartan,” Ann. Sci. Ecole Norm. Super.,1, No. 2, 417–444 (1968).Google Scholar
- 40.H. Goldschmidt, “Prolongations of linear partial differential equations. II. Inhomogeneous equations,” Ann. Sci. Ecole Norm. Super.,1, No. 4, 617–625 (1968).Google Scholar
- 41.H. Goldschmidt, “Prolongementes d'equations differentielles lineaire. III. La suite exacte de cohomologie de Spencer,” Ann. Sci. Ecole Norm. Super.,7, No. 1, 5–27 (1974).Google Scholar
- 42.H. Goldschmidt and D. Spencer, “On the nonlinear cohomology of Lie equations. I, II,” Acta Math.,136, Nos. 1–2, 103–239 (1976); Nos. 3–4, 171–239 (1976).Google Scholar
- 43.H. Goldschmidt and S. Sternberg, “The Hamilton-Cartan formalism in the calculus of variations,” Ann. Inst. Fourier, Grenoble,23, No. 1, 203–267 (1973).Google Scholar
- 44.A. Grothendieck, Elements de Geometrie Algebrique. IV. Etude Locale des Schemas et des Morphismes des Schemas, Publs. Math. Inst. Hautes Etudes Scient.,32 (1967).Google Scholar
- 45.R. Hermann, “Cartan's geometric theory of partial differential equations” Adv. Math.,1, No. 3, 265–317 (1965).Google Scholar
- 46.E. Kähler, Einführung in die Theorie der Systeme von Differentialgleichungen, Hamburger Math. Einzelschribte,16 (1934).Google Scholar
- 47.A. Kumpera, “Invariants differentiels d'un pseudogroupe de Lie,” J. Different. Geom.,10, No. 2, 289–417 (1974).Google Scholar
- 48.M. Kuranishi, “On E. Cartan's prolongations theorem of exterior differential systems,” Am. J. Math.,79, No. 1, 1–47 (1957).Google Scholar
- 49.M. Kuranishi, Lectures on Exterior Differential Systems, Tata Inst. of Fundamental Research, Bombay (1962).Google Scholar
- 50.M. Kuranishi, Lectures on Involutive Systems of Partial Differential Equations, Publ. Soc. Mat. San Paulo, San Paulo (1967).Google Scholar
- 51.S. Lie, Gesamelte Abhandlungen, Bd. 4, Teubner, Leipzig (1929).Google Scholar
- 52.S. Lie and F. Engel, Theorie der Transformationsgruppen, Bd. 1–3, Teubner, Leipzig, 1886, 1890, 1893.Google Scholar
- 53.S. Sternberg, Notes on Partial Differential Equations, Harvard University (1968).Google Scholar
- 54.F. Takens, “A global version of the inverse problem of the calculus of variations,” Math. Inst. Rijksuniversiteit Groningen, Preprint No. ZW-7701 (1977).Google Scholar
Copyright information
© Plenum Publishing Corporation 1981