Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Local convex analysis

  • 96 Accesses

  • 6 Citations

Abstract

The article focuses on subdifferential calculus. A discussion of sublinear operators is followed by convex operators and finally by general nonlinear operators and applications to extremal problems.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    G. P. Akilov and S. S. Kutateladze, Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).

  2. 2.

    V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).

  3. 3.

    V. I. Arkin and V. L. Levin, “Convexity of the values of vector integrals, theorems of measurable selection, and variational problems,” Usp. Mat. Nauk,27, No. 3, 21–77 (1972).

  4. 4.

    V. V. Beresnev, “On mappings dual to convex multivalued mappings,” Kibernetika, No. 5, 79–83 (1973).

  5. 5.

    V. G. Boltyanskii, Optimal Discrete Control [in Russian], Nauka, Moscow (1973).

  6. 6.

    V. G. Boltyanskii, “The method of tents in the theory of extremal problems,” Usp. Mat. Nauk,30, No. 3, 3–55 (1975).

  7. 7.

    N. Bohr, Atomic Physics and Human Knowledge [Russian translation], Mir, Moscow (1961).

  8. 8.

    A. G. Butovskii, M. A. Gavrilov, et al., “Some topics in theoretical cybernetics,” in: Cybernetics in the Service of Communism, Vol. 9, Control and Information [in Russian], énergiya, Moscow (1978), pp. 58–107.

  9. 9.

    J. Warga, Optimal Control of Differential and Functional Equations, Academic Press (1972).

  10. 10.

    B. Z. Vulikh, Introduction to the Theory of Semiordered Spaces [in Russian], Moscow, Fizmatgiz (1961).

  11. 11.

    B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Gordan and Breach (1967).

  12. 12.

    R. Gabasov and F. M. Kirillova, “Methods of optimal control,” B. Sh. Mordukhovich, “Supplement. The existence of optimal controls,” in: Sov. Prob. Mat., Vol. 6, Itogi Nauki i Tekhniki, VINITI Akad. Nauk SSSR, Moscow (1976), pp. 133–261.

  13. 13.

    R. V. Gamkrelidze, “On sliding optimal controls,” Dokl. Akad. Nauk SSSR,143, No. 6, 1243–1245 (1962).

  14. 14.

    R. V. Gamkrelidze, “The theory of the first variation,” Dokl. Akad. Nauk SSSR,161, No.1, 23–26 (1965).

  15. 15.

    E. G. Gol'shtein, Duality Theory in Mathematical Programming and Its Applications [in Russian], Nauka, Moscow (1971).

  16. 16.

    A. M. Gupal, “On a method of minimizing almost differentiable functions,” Kibernetika, No. 1, 114–116 (1977).

  17. 17.

    V. F. Dem'yanov, Minimas: Directional Differentiability [in Russian], Leningrad State Univ. (1974).

  18. 18.

    V. F. Dem'yanov and V. N. Malozemov, Introduction to Minimax [in Russian], Nauka, Moscow (1972).

  19. 19.

    V. F. Dem'yanov and L. I. Polyakova, “The conditions for a minimum of a quasidifferentiable function on a quasidifferentiable set,” Zh. Vychisl. Mat. Mat. Fiz.,20, No. 4, 849–856 (1980).

  20. 20.

    V. F. Dem'yanov and A. M. Rubinov, “On quasidifferentiable functionals,” Dokl. Akad. Nauk SSSR,250, No. 1, 21–25 (1980).

  21. 21.

    V. F. Dem'yanov and V. K. Shemesova, “Constrained subdifferentials of convex functions,” Dokl. Akad. Nauk SSSR,242, No. 4, 753–756 (1978).

  22. 22.

    V. F. Dem'yanov and V. K. Shemesova, “Directional differentiability of the supremum function,” Vestn. Leningr. Gos. Univ., No. 7, 15–20 (1978).

  23. 23.

    N. N. Dzyuba and B. N. Pshenichnyi, “On the discrete maximum principle,” Kibernetika, No. 2, 46–49 (1975).

  24. 24.

    A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems with constraints,” Dokl. Akad. Nauk SSSR,149, No. 4, 759–762 (1963).

  25. 25.

    A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems with constraints,” Zh. Vychisl. Mat. Mat. Fiz.,5, No. 3, 395–453 (1965).

  26. 26.

    A. Ya. Zaslavskii, “Description of some classes of support sets,” Sib. Mat. Zh.,20, No. 2, 270–277 (1979).

  27. 27.

    A. D. Ioffe and V. L. Levin, “Subdifferentials of convex functions,” Tr. Mosk. Mat. Obshch.,26., 3–72 (1972).

  28. 28.

    A. D. Ioffe and V. M. Tikhomirov, “Duality of convex functions and extremal problems,” Usp. Mat. Nauk,23, No. 6, 51–116 (1968).

  29. 29.

    A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).

  30. 30.

    L. V. Kantorovich, “On an effective method of solution of some classes of extremal problems,” Dokl. Akad. Nauk SSSR,28, No. 3, 212–215 (1940).

  31. 31.

    L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).

  32. 32.

    L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker, Functional Analysis in Semiordered Spaces [in Russian], Gostekhizdat, Moscow-Leningrad (1950).

  33. 33.

    L. V. Kantorovich, V. L. Makarov, et al., “Development of the mathematical apparatus in eoonomics,” in: The 20 Years of the Siberian Division. The Research Base [in Russian], Nauka, Novosibirsk (1977), pp. 12–16.

  34. 34.

    M. A. Krasnosel'skii, Positive Solutions of Operator Equations [in Russian], Fizmatgiz, Moscow (1962).

  35. 35.

    M. A. Krasnosel'skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces [in Russian], Fizmatgiz, Moscow (1958).

  36. 36.

    M. G. Krein, “Basic properties of normal conical sections in Banach spaces,” Dokl. Akad. Nauk SSSR,28, No. 1, 13–17 (1940).

  37. 37.

    M. G. Krein, “On minimal decomposition of a functional into positive components,” Dokl. Akad. Nauk SSSR,28, No. 1, 18–22 (1940).

  38. 38.

    A. Ya. Kruger, Subdifferentials-of Nonconvex Functions and Generalized Directional Derivatives [in Russian], Unpublished Manuscript, Vestn. B. Univ., Mat. Fiz., Mekh., Minsk (1977). (Submitted to VINITI, June 26, 1977, No. 2661-77 Dep.)

  39. 39.

    A. Ya. Kruger, Necessary Conditions for an Extremum in Nonconvex Programming Problems in Linear Normed Spaces [in Russian], Unpublished Manuscript, Vestn. B. Univ., Mat., Fiz., Mekh., Minsk (1977). (Submitted to VINITI, March 16, 1978, No. 943-78 Dep.)

  40. 40.

    A. G. Kusraev, “On necessary conditions of extremum for nonsmooth vector-valued mappings,” Dokl. Akad. Nauk SSSR,242, No. 1, 44–47 (1978).

  41. 41.

    A. G. Kusraev, “On subdifferential mappings of convex operators,” Optimizatsiya, No. 21(38), 36–40 (1978).

  42. 42.

    A. G. Kusraev, On Subdifferentiation of Nonsmooth Operators [in Russian], Preprint IM Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979).

  43. 43.

    A. G. Kusraev, “Subdifferentiation of nonsmooth operators and necessary conditions of extremum in multiobjective problems with constraints,” Optimizatsiya, No. 24(41), 75–117 (1980).

  44. 44.

    A. G. Kusraev and S. S. Kutateladze, “Rockafellar convolution and the characteristic of optimal paths,” Dokl. Akad. Nauk SSSR,251, No. 2, 280–283 (1980).

  45. 45.

    A. G. Kusraev and S. S. Kutateladze, “Convex operators in pseudotopological vector spaces,” Optimizatsiya, No. 25(42), 5–41 (1980).

  46. 46.

    S. S. Kutateladze, “Choquet boundaries in K-spaces,” Usp. Mat. Nauk,30, No. 4, 107–146 (1975).

  47. 47.

    S. S. Kutateladze, “Support sets of sublinear operators,” Dokl. Akad. Nauk SSSR,230, No 5 1029–1032 (1976).

  48. 48.

    S. S. Kutateladze, “Formulas for calculating subdifferentials,” Dokl. Akad. Nauk SSSR232, No. 4, 770–772 (1977).

  49. 49.

    S. S. Kutateladze, “Substitution of variable in Young transform,” Dokl. Akad. Nauk SSSR233, No. 6, 1039–1041 (1977).

  50. 50.

    S. S. Kutateladze, “Subdifferentials of convex operators,” Sib. Mat. Zh., No. 5, 1057–1064.(1977).

  51. 51.

    S. S. Kutateladze, “Convex operators,” Usp. Mat. Nauk,34, No. 1, 167–196 (1979).

  52. 52.

    S. S. Kutateladze, “Convex ɛ-programming,” Dokl. Akad. Nauk SSSR,245, No. 5, 1048–1050 (1979).

  53. 53.

    S. S. Kutateladze, “The Krein-Mil'man theorem and its converse,” Sib. Mat. Zh.,21, No. 1, 130–138 (1980).

  54. 54.

    S. S. Kitateladze, “ɛ-Subdifferentials and ɛ-optimality,” Sib. Mat. Zh.,21, No. 3, 120–130 (1980).

  55. 55.

    S. A. Kutateladze, “Modules admitting convex analysis,” Dokl. Akad. Nauk SSSR,252, No. 4, 789–791 (1980).

  56. 56.

    S. S. Kutateladze and A. M. Rubinov, Minkowski Duality and Its Applications [in Russian], Nauka, Novosibirsk (1976).

  57. 57.

    M. M. Fel'dman, “Lagrange multipliers in vector optimization problems,” Dokl. Akad. Nauk SSSR,231, No. 1, 28–31 (1976).

  58. 58.

    V. A. Levashov, “Operator analogs of the Krein-Mil'man theorem,” Funkts. Anal. Ego Prilozhen.,14, No. 2, 61–62 (1980).

  59. 59.

    V. A. Levashov, “On operator orthogonal complements,” Mat. Zametki,28, No. 1, 127–130 (1980).

  60. 60.

    V. A. Levashov, “Subdifferentials of sublinear operators in continuous function spaces,” Dokl. Akad. Nauk SSSR,252, No. 1, 33–36 (1980).

  61. 61.

    V. A. Levashov, “Internal characterization of classes of support sets,” Sib. Mat. Zh.,21, No. 3, 131–143 (1980).

  62. 62.

    V. L. Levin, “Subdifferentials of convex mappings and compound functions,” Sib. Mat. Zh.,13, No. 6, 1295–1303 (1972).

  63. 63.

    V. L. Levin, “Convex integral functionals and lifting theory,” Usp. Mat. Nauk,30, No. 2, 115–178 (1975).

  64. 64.

    V. L. Levin and A. A. Milyutin, “The problem of mass transfer with a discontinuous cost function and a mass statement of the duality problem for convex extremal problems,” Usp. Mat. Nauk,34, No. 3, 3–68 (1979).

  65. 65.

    E. S. Levitin, A. A. Milyutin, and N. P. Osmolovskii, “On conditions of local minimum in constrained problems,” in: Mathematical Economics and Functional Analysis [in Russian], Nauka, Moscow (1974), pp. 139–202.

  66. 66.

    E. S. Levitin, A. A. Milyutin, and N. P. Osmolovskii, “Higher order conditions of local minimum in constrained problems,” Usp. Mat. Nauk,33, No. 6, 85–148 (1978).

  67. 67.

    Yu. é. Linke, “On support sets of sublinear operators,” Dokl. Akad. Nauk SSSR,207, No. 3, 531–533 (1972).

  68. 68.

    Yu. é. Linke, “Sublinear operators with values in continuous function spaces,“ Dokl. Akad. Nauk SSSR,228, No. 3, 540–542 (1976).

  69. 69.

    Yu. é. Linke, “Sublinear operators and Lindenstrauss spaces,” Dokl. Akad. Nauk SSSR,234, No. 1, 26–29 (1977).

  70. 70.

    Yu. é. Linke, “Sublinear operators defined on a cone in a finite-dimensional space,” Sib. Mat. Zh.,21, No. 1, 130–152 (1980).

  71. 71.

    Yu. é. Linke and A. A. Tolstonogov, “Representations of sublinear operators by multivalued mappings,” Dokl. Akad. Nauk SSSR,234, No. 2, 294–297 (1977).

  72. 72.

    Yu. é. Linke and A. A. Tolstonogov, “On properties of sublinear operator spaces,” Sib. Mat. Zh.,20, No. 4, 792–806 (1979).

  73. 73.

    J. L. Lions, Non-Homogeneous Boundary-Value Problems and Applications, Springer-Verlag (1972).

  74. 74.

    G. G. Magaril-Ilyaev, “Implicit function theorem for Lipschitzian mappings,” Usp. Mat. Nauk,33, No. 1, 221–222 (1978).

  75. 75.

    V. L. Makarov, “Asymptotic behavior of linear economic models,” Sib. Mat. Zh.,7, No. 4, 832–853 (1966).

  76. 76.

    V. L. Makarov and A. M. Rubinov, “Superlinear point-to-set mappings and dynamic economic models,” Usp. Mat. Nauk,25, No. 5, 125–169 (1970).

  77. 77.

    V. L. Makarov and A. N. Rubinov, Mathematical Theory of Economic Dynamics and Equilibrium [in Russian], Nauka, Moscow (1973).

  78. 78.

    D. P. Mil'man, “Facet characteristic of convex sets; extremal elements,” Tr. Mosk. Mat. Obshch.,22, 63–126 (1970).

  79. 79.

    E. A. Nurminskii, “The quasigradient method for the solution of the nonlinear programming problem,” Kibernetika, No. 1, 122–125 (1973).

  80. 80.

    E. A. Nurminskii, “On continuity of ɛ-subgradient mappings,” Kibernetika, No. 5, 148–149 (1977).

  81. 81.

    B. N. Pshenichnyi, Necessary Conditions of Extremum [in Russian], Nauka, Moscow (1969).

  82. 82.

    B. N. Pshenichnyi, “Convex multivalued mappings and their duals,” Kibernetika, No. 3, 94–102 (1972).

  83. 83.

    B. N. Pshenichnyi, “On necessary conditions of extremum for nonsmooth functions,” Kibernetika, No. 6, 92–96 (1977).

  84. 84.

    B. N. Pshenichnyi, Convex Analysis and Extremal Problems [in Russian], Moscow, Nauka (1980).

  85. 85.

    R. T. Rockafellar, Convex Analysis, Princeton Univ. Press (1970).

  86. 86.

    R. Rockafellar, “Integrals which are convex functionals. II,” in: Matematicheskaya Ekonomika [Russian translation], Mir, Moscow (1974), pp. 170–204.

  87. 87.

    A. M. Rubinov, “Sublinear operators and operator convex sets,” Sib. Mat. Zh.,17, No. 2, 370–380 (1976).

  88. 88.

    A. M. Rubinov, “Sublinear operators and their applications,” Usp. Mat. Nauk,32, No. 4, 113–174 (1977).

  89. 89.

    A. M. Rubinov, “Turnpikes in von Neumann-Gale models,” Dokl. Akad. Nauk SSSR,242, No. 2, 287–289 (1978).

  90. 90.

    A. M. Rubinov, “Turnpike sets in discrete dynamic systems,” Sib. Mat. Zh.,21, No. 4, 136–145 (1980).

  91. 91.

    A. M. Rubinov, Superlinear Multivalued Mappings and Their Application in Mathematical Economics [in Russian], Nauka, Moscow (1980).

  92. 92.

    V. M. Tikhomirov, Some Topics in Approximation Theory [in Russian], Moscow State Univ. (1976).

  93. 93.

    A. A. Tolstonogov, “On some properties of sublinear functional spaces,” Sib. Mat. Zh.,18, No. 2, 442–456 (1977).

  94. 94.

    R. P. Fedorenko, Numerical Solution of Optimal Control Problems [in Russian], Nauka, Moscow (1978).

  95. 95.

    M. M. Fel'dman, “On sufficient conditions for the existence of support operators for sublinear operators,” Sib. Mat. Zh.,16, No. 1, 132–138 (1975).

  96. 96.

    M. M. Fel'dman, “On sublinear operators defined on a cone,” Sib. Mat. Zh.,16, No. 6, 1308–1321 (1975).

  97. 97.

    Yu. A. Shashkin, “Convex sets, extreme points, Simplexes,” in: Mathematical Analysis, Vol. 11 (Itogi Nauki i Tekhniki, VINITI, AN SSSR) [in Russian], Moscow (1973), pp. 5–30.

  98. 98.

    H. Schaeffer, Topological Vector Spaces, Macmillan, New York (1966).

  99. 99.

    N. Z. Shor, “On a class of almost-differentiable functions and one method of minimizing the functions of this class,” Kibernetika No. 4, 65–70 (1972).

  100. 100.

    N. Z. Shor, “New directions in the development of nonsmooth optimization methods,” Kibernetika No. 6, 87–91 (1977).

  101. 101.

    I. Ekeland and R. Teman, Convex Analysis and Variational Problems, Elsevier (1976).

  102. 102.

    L. Young, Lectures on Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia (1969).

  103. 103.

    A. Achilles, K. H. Elster, and R. Nehse, “Bibliographie zur Vectoroptimierung (Theorie und Anwendungen),” Math. Operationsforsch. Statist., Ser Optimization,10, No. 2, 277–321 (1979).

  104. 104.

    N. Altman, “A general extremum principle for optimization problems,” Nonlin. Anal., Theory, Methods Appl.,3, No. 6, 891–895 (1979).

  105. 105.

    L. Asimov, “Affine selections on simplically split faces of compact sets,” J. London Math. Soc,6, No. 3, 533–538 (1979).

  106. 106.

    E. Asplund, “Frechet differentiability of convex functions,” Acta Math.,121, No. 1–2, 31–47 (1968).

  107. 107.

    J. P. Aubin, “Ioffe fans and generalized derivatives of vector-valued maps,” Convex Analysis and Optimization, Imperial College, London (1980).

  108. 108.

    J. P. Aubin and F. H. Clarke, “Multiplicateurs de Lagrange en optimization nonconvexe et applications,” C. R. Acad. Sci.,285, No. 6, A451 (1977).

  109. 109.

    V. Barbu and Th. Precupanu, Convexity and Optimization in Banach Spaces, Acad. RSR, Bucharest and Sijthoff and Noordhoff Int. Publ., Alphen aan de Rijn (1978).

  110. 110.

    J. W. Baker, “Continuity in ordered spaces,” Math. Z.,104, No. 3, 231–246 (1968).

  111. 111.

    M. S. Bazaraa and J. J. Goode, “Necessary optimality criteria in mathematical programming in normed linear spaces,” J. Optimiz. Theory Appl.,11, No. 3, 325–244 (1973).

  112. 112.

    M. S. Bazaraa, J. J. Goode, and M. Z. Nashed, “On the cones of tangents with applications to mathematical programming,” J. Optimiz. Theory Appl.,13, No. 4, 389–426 (1974).

  113. 113.

    A. Bigard, “Modules ordonnes injectifs,” Mathematika (RSR),15, No. 1, 15–24 (1973).

  114. 114.

    E. Bishop and R. R. Phelps, “The support functional of a convex set,” Convexity, AMS, Providence, R.I. (1963), pp. 27–35.

  115. 115.

    W. Bonice and R. Silvermann, “The Hahn-Banach extension and the least upper bound properties are equivalent,” Proc. AMS,18, No. 5, 843–850 (1967).

  116. 116.

    F. F. Bonsall, “Endomorphisms of partially ordered vector spaces without order unit,” J. London Math. Soc.,30, No. 2, 144–153 (1955).

  117. 117.

    W. Breckner and E. Scheiber, “A Hahn-Banach type extension theorem for linear mappings into ordered modules,” Mathematika (RSR),19, No. 1, 15–27 (1977).

  118. 118.

    H. Brezis and F. Browder, “A general ordering principle in nonlinear analysis,” Adv. Math.,21, No. 3, 355–364 (1976).

  119. 119.

    A. Bronsted, “Conjugate convex functions in topological vector spaces,” Mat.-Fys. Medd. Kgl. Danske Vid. Selskab.,34, No. 2 (1964).

  120. 120.

    A. Bronsted and R. T. Rockafellar, “On subdifferentiability of convex functions,” Proc. AMS,16, No. 4, 605–611 (1965).

  121. 121.

    F. Browder, “Normal solvability for nonlinear problems into Banach spaces,” Bull. AMS,79, 328–350 (1973).

  122. 122.

    L. G. Brown, “Topologically complete groups,” Proc. AMS,35, No. 2, 593–600 (1972).

  123. 123.

    T. Byckowski and R. Pol, “On the closed graph and open mapping theorems,” Bull, de l'Academie Polonaise de Sciences Math. Astron., Phys.,24, 723–726 (1976).

  124. 124.

    C. Castaing and M. Valadier, “Convex analysis and measurable multifunctions,” Lect. Notes Math.,580 (1977).

  125. 125.

    J. P. R. Christensen, Topoly and Borel Structure, North-Holland, Amsterdam (1974).

  126. 126.

    N. Christopeit, “Necessary optimality conditions with application to a variational problem,” SIAM J. Control Optim.,15, No. 4, 683–698 (1977).

  127. 127.

    F. H. Clarke, “Generalized gradients and applications,” Trans. AMS,205, No. 2, 247–262 (1975).

  128. 128.

    F. H. Clarke, “Admissible relaxation in variational and control problems,” J. Math. Anal. Appl.,51, No. 3, 557–576 (1975).

  129. 129.

    F. H. Clarke, “The Euler-Lagrange differential inclusions,” J. Diff. Equations,19, No. 1, 80–90 (1975).

  130. 130.

    F. H. Clarke, “A new approach to Lagrange multipliers,” Math. Oper. Res.,1, No. 2, 165–174 (1976).

  131. 131.

    F. H. Clarke, “On the inverse function theorem,” Pac. J. Math.,64, No. 1, 97–102 (1976).

  132. 132.

    F. H. Clarke, “The maximum principle under minimal hypotheses,” SIAM J. Control. Optim.,14, No. 6, 1078–1091 (1976).

  133. 133.

    F. H. Clarke, “The generalized problem of Bolza,” SIAM J. Control Optimiz.,14, No. 4, 682–699 (1976).

  134. 134.

    F. H. Clarke “Inequality constraints in the calculus of variations,“ Can. J. Math.,29, No. 3, 528–540 (1977).

  135. 135.

    F. H. Clarke, “Extremal arcs and extended Hamiltonian systems,” Trans. AMS,231, No. 2, 349–367 (1977).

  136. 136.

    F. H. Clarke and J. P. Aubin, “Monotona invariant solution to differential inclusions,” Systémes evolutifs multivoques, Université de Paris (1977), pp. 115–132.

  137. 137.

    J. Diestel, “Geometry of Banach spaces — selected topics,” Lect. Notes Math.,485 (1975).

  138. 138.

    J. Diestel and J. J. Uhl, “Vector measures,” Math. Surverys,15, AMS, Providence, R. I. (1977).

  139. 139.

    I. Ekeland, “Sur les problémesvariationelles,” C. R. Acad. Sci.,275, No. 21, A1057-A1059 (1972).

  140. 140.

    I. Ekeland, “Remarques sur les problémes variationelles,” C. R. Acad. Sci.,276, No. 20, A1347-A1348 (1973).

  141. 141.

    I. Ekeland, “On the variational principle,” J. Math. Anal. Appl.,47, No. 2, 327–353 (1974).

  142. 142.

    I. Ekeland, “Nonconvex optimization problems,” Bull. AMS,1, No. 3, 443–474 (1979).

  143. 143.

    I. Ekeland and G. Leborg, “Generic Frechet-differentiability and perturbed optimization problems in Banach spaces,” Trans. AMS,224, No. 2, 193–316 (1976).

  144. 144.

    K.-H. Elster and R. Nehse, “Necessary and sufficient conditions for the order completeness of partially ordered vector spaces,” Math. Nachr.,81, 301–311 (1978).

  145. 145.

    M. Fabian, “Concerning interior mapping theorem,” Comment. Math. Univ. Carol.,20, No. 2, 345–350 (1979).

  146. 146.

    K. Fan, “On the Krein-Milman theorem,” Convexity, AMS, Providence, R. I. (1963), pp. 211–219.

  147. 147.

    W. Fenchel, “On conjugate convex functions,” Can. J. Math.,1, 73–77 (1949).

  148. 148.

    W. Fenchel, Convex Cones, Sets, and Functions, Princeton Univ. Press (1951).

  149. 149.

    B. Fuchssteiner, “Sandwich theorem and lattice semigroups,” J. Funct. Anal.,16, No. 1, 1–14 (1974).

  150. 150.

    S. GÄhler, “Eine Veraligemeinung des Satzes von Dubovichkij-Miljutin,” Math. Nachr.,77, 117–138 (1977).

  151. 151.

    H. Halkin, “Nonlinear nonconvex programming in infinite dimensional space,” Math. Theory of Control, Academic Press, New York (1967), pp. 10–25.

  152. 152.

    H. Halkin, “A satisfactory treatment of equality and operator constraints in the Dubovitskii-Milyutin formalism,” J. Optimiz. Theory Appl.,6, No. 2, 138–149 (1970).

  153. 153.

    H. Halkin, “Implicit functions and optimization problems without continuous differentiability of the data,” SIAM J. Control Optimiz.,12, No. 2, 229–230 (1974).

  154. 154.

    H. Halkin, “Interior mapping theorem with set-valued derivatives,” J. Anal. Math.,30, 200–207 (1976).

  155. 155.

    H. Halkin and L. W. Neustadt, “General necessary conditions for optimization problems,” Proc. Nat. Acad. Sci. USA,56, No. 4, 1066–1071 (1966).

  156. 156.

    J.-B., Hiriart-Urruty, “Conditions necessaires d'optimalité en programmation non differentiable,” C. R. Acad. Sci.,283, No. 11, A843-A845 (1976).

  157. 157.

    J.-B. Hiriart-Urruty, “Gradients generalisés de fonctions composees,” C. R. Acad. Sci.,285, No. 12, A781-A784 (1977).

  158. 158.

    J. B. Hiriart-Urruty, “Conditions necessaires d'optimalite pour une programme stochastique avec recours,” SIAM J. Control. Optim.,16, 317–329 (1978).

  159. 159.

    J.-B. Hiriart-Urruty, “On optimality conditions in nondifferentiable programming,” Math. Programming,14, No. 1, 73–86 (1978).

  160. 160.

    J.-B. Hiriart-Urruty, “Grandients generalisés de fonctions marginales,” SIAM J. Control and Optim.,16, No. 2, 301–316 (1978).

  161. 161.

    J.-B Hiriart-Urruty, “Tangent cones, generalized gradients and mathematical programming in Banach spaces,” J. Math. Oper. Res.,4, No. 1, 79–97 (1979).

  162. 162.

    J.-B. Hiriart-Urruty, “Refinements of necessary optimality conditions in nondifferentiable programming,” Appl. Math. Optim.,5, No. 1, 63–82 (1979).

  163. 163.

    J.-B. Hiriart-Urruty, “ɛ-Subdifferential calculus,” Convex Analysis and Optimiz., Im-Perial College, London (1980), pp. 1–44.

  164. 164.

    R. Holmes, Geometric Functional Analysis and Its Applications, Graduate Texts in Mathematics, Vol. 24, Springer-Verlag, New York (1975).

  165. 165.

    A. D. Ioffe, “Necessary and sufficient conditions for a local minimum, 1. A reduction theorem and first-order conditions,” SIAM J. Control. Optim.,17, No. 2, 245–250 (1979).

  166. 166.

    A. D. Ioffe, “Necessary and sufficient conditions for a local minimum, 2, Conditions of Levitin-Milyutin-Osmolovskii type,” SIAM J. Control Optim.,17, No. 2, 251–265 (1979).

  167. 167.

    A. D. Ioffe, “Necessary and sufficient conditions for a local minimum, 3. Second-order conditions and augmented duality,” SIAM J. Control Optim.,17, No. 2, 266–288 (1979).

  168. 168.

    A. D. Ioffe, “Regular points of Lipschitz functions,” Trans. AMS,251, 61–69 (1979).

  169. 169.

    A. D. Ioffe, “Differentials generalisés d'application localement lipschitzennes d'un espace de Banach dans un autre,” C. R. Acad. Sci.,AB289, A637-A640 (1979).

  170. 170.

    G. Jameson, “Ordered linear spaces,” Lect. Notes Math.,141 (1979).

  171. 171.

    W. Karush, “Minima of functions of several variables with inequalities as side conditions,” Master's Thesis, Dept. of Math., Univ. of Chicago (December 1939).

  172. 172.

    R. Kaufman, “Interpolation of additive functionals,” Stud. Math.,27, No. 3, 269–272 (1966).

  173. 173.

    J. L. Kelly, “Hypercomplete linear topological spaces,” Michigan Math. J.,5, No. 2, 235–246 (1958).

  174. 174.

    V. L. Klee, “Boundedness and continuity of linear functionals,” Duke Math. J.,22, No. 2, 263–269 (1955).

  175. 175.

    T. C. Koopmans, “Analysis of production as an efficient combination and allocation,” in: T. C. Koopmans (ed.), New York (1951), pp. 33–97.

  176. 176.

    P. Kosmol, “On stability of convex operators,” Optimization and Operational Research, Lecture Notes in Econ. Math. Systems, Vol. 157 (1978), pp. 173–179.

  177. 177.

    P. Kosmol, W. Schill, and M. Wriedt, “Der Satz von Banach-Steinhaus für konvexe Operatoren,” Arch. Math.,33, No. 6, 567–569 (1980).

  178. 178.

    G. Kothe, Topological Vector Spaces, II, Springer-Verlag, New York (1980).

  179. 179.

    P. Kranz, “Sandwich and extension theorems on semigroups and lattices,” Rocz. Pol. Tow. Mat., Ser. 1,18, No. 2, 193–200 (1975).

  180. 180.

    M. G. Krein and D. P. Milman, “On extreme points of regular convex sets,” Stud. Math.,9, 133–138 (1940).

  181. 181.

    H. W. Kuhn, “Nonlinear programming: a historical view,” Nonlinear Programming, Proc. Symp. Appl. Math., AMS and SIAM, New York City, 1975, AMS, Providence, R. I. (1976), pp. 1–26.

  182. 182.

    H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in: Proc. Second Berkeley Symp. on Math. Stat. and Probab., Univ. of California Press, Berkeley (1951), pp. 481–492.

  183. 183.

    B. Lantos, “The local supremum principle for optimal control problems with nonscalarvalued performance criterion,” Period. Polytech. Elect. Eng.,20, No. 3, 313–323 (1976).

  184. 184.

    D. G. Larman and R. R. Phelps, “Gateaux differentiability of convex functions on Banach spaces,” J. London Math. Soc.,20, No. 1, 115–127 (1979).

  185. 185.

    Z. Lipecki, “Extension of positive operators and extreme points. II,” Colloq, Math.,42, 285–289 (1979).

  186. 186.

    Z. Lipecki, D. Plachky, and W. Thomsen, “Extension of positive operators and extreme points. I,” Colloq. Math.,42, 280–284 (1979).

  187. 187.

    K. C. Looney, “Operator minimax theorems in Banach lattices,” Proc. AMS,65, No. 2, 303–308 (1977).

  188. 188.

    W. Luxemburg and A. Schep, “A Radon-Nikodym type theorem for positive operators and a dual,” Proc. Kon. Ned. Acad. Wetensch.,A81, No. 3, 357–375 (1978).

  189. 189.

    C. Malivert, J. P. Penot, and M. Thera, “Un prolongment du theoreme de Hahn-Banach,” C. R. Acad. Sci.,AB286, A165-A168 (1978).

  190. 190.

    E. Michel, “Continuous selections, I,” Ann. Math.,63, No. 2, 361–382 (1956).

  191. 191.

    P. Michel, “Problemé d'optimization defini par des fonctions qui sont sommes de fonctions convexes et de fonctions derivable,” J. Math. Pure Appl.,53, No. 3, 321–329 (1974).

  192. 192.

    G. J. Minty, “On the maximal domain of ‘monotone” functions,” Michigan Math. J.,8, No. 2, 135–137 (1961).

  193. 193.

    G. J. Minty, “Monotone (nonlinear) operators in Hilbert spaces,” Duke Math. J.,29, No. 3, 342–346 (1962).

  194. 194.

    G. J. Minty, “On the monotonicity of the gradient of convex functions,” Pac. J. Math.,14, No. 2, 243–247 (1962).

  195. 195.

    J.-J. Moreau, “Fonctions convexes en dualité,” Seminaires de Math., Faculté des Sciences, Univ. de Montpellier (1962).

  196. 196.

    J.-J. Moreau, “Fonctions duales et points proximaux dans un espace hilbertien,” C. R. Acad. Sci.,255, No. 22, 2897–2899 (1962).

  197. 197.

    J.-J. Moreau, “Fonctionelles convexes,” Lecture Notes, Seminaire “Equations aux derivées partielles,” College de France (1966).

  198. 198.

    P. D. Morris and I. R. Phelps, “Theorem of Krein-Milman type for certain convex sets of operators,” Trans. AMS,150, No. 1, 183–200 (1970).

  199. 199.

    J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making Univ. of South Carolina Press, Columbia, S. C. (1973).

  200. 200.

    H. Thiriez and S. Zionts (eds.), Multiple Criteria Decision Making, Jony-Joasas, France 1975, Lecture Notes Econ. and Maths Systems, Vol. 130, Springer-Verlag, Berlin (1976).

  201. 201.

    M. Zeleny (ed.), Multiple Criteria Decision Making, Kyoto, 1975, Lect. Notes Econ. Math. Systems,123 Springer-Verlag, Berlin (1976).

  202. 202.

    L. Nachbin, “A theorem of the Hahn-Banach type for linear transformations,” Trans. AMS,68, No. 4, 28–46 (1950).

  203. 203.

    L. Nachbin, “Some problems in extending and lifting continuous linear transformations,” Proc. Int. Symposium on Linear Spaces, Jerusalem (1960), pp. 340–351.

  204. 204.

    I. Namioka and R. R. Phelps, “Banach spaces which are Asplund spaces,” Duke Math. J.,42, No. 4, 735–749 (1975).

  205. 205.

    R. Nehse, “Some general separation theorems,” Math. Nachr.,84, 319–322 (1978).

  206. 206.

    R. Nehse, “The Hahn-Banach property and equivalent conditions,” Comment. Math. Univ. Carol.,19, No. 1, 165–177 (1978).

  207. 207.

    J. von Neumann, “Zur Theorie der Geselschaftsspiele,” Math. Ann.,100, 295–320 (1928).

  208. 208.

    M. Neumann, “Continuity of sublinear operators on F-spaces,” Manus. Math.,26, No. 1–2, 37–61 (1978).

  209. 209.

    L. W. Neustadt, “An abstract variational theory with applications to a broad class of optimization problems, I: General theory,” SIAM J. Control Optim.,4, No. 3, 505–527 (1966).

  210. 210.

    L. W. Neustadt, “A general theory of extremals,” J. Comput. System Sci.,3, No. 1, 57–92 (1969).

  211. 211.

    L. W. Neustadt, Optimization: A Theory of Necessary Conditions, Princeton Univ. Press (1976).

  212. 212.

    D. K. Oates, “A noncompact Krein-Milman theorem,” Pac. J. Math.,36, No. 3, 781–788 (1971).

  213. 213.

    V. Pareto, Manual of Political Economy, New York (1971).

  214. 214.

    J. P. Penot, “Calcul sous-differential et optimization,” J. Funct. Anal.,27, No. 2, 248–276 (1978).

  215. 215.

    B. J. Pettis, “Closed graph and open mapping theorems in certain topologically complete spaces,” Bull. London Math. Soc.,6, No. 1, 37–41 (1974).

  216. 216.

    R. R. Phelps, Differentiability of Convex Functions on Banach Spaces, London (1978).

  217. 217.

    B. H. Pourciau, “Analysis and optimization of Lipshitz continuous mappings,” J. Optimiz. Theory Appl.,22, No. 3, 311–351 (1977).

  218. 218.

    V. Ptak, “Completeness and the open mapping theorem,” Bull. Soc. Math., France,86, No. 1, 41–74 (1958).

  219. 219.

    C. Raffin, “Sur les programmes convexes definis dans de espaces vectoriels topologiques,” Ann. Inst. Fourier,20, No. 1, 457–491 (1970).

  220. 220.

    K. Ritter, “Optimization theory in linear spaces, III. Mathematical programming in ordered linear spaces,” Math. Ann.,184, No. 2, 133–154 (1970).

  221. 221.

    S. M. Robinson, “Regularity and stability for convex multivalued functions,” Math. Oper. Res.,1, No. 2, 130–143 (1976).

  222. 222.

    R. T. Rockaffellar, “Monotone processes of convex and concave type,” Mem. AMS, No. 77 (1967).

  223. 223.

    R. T. Rockafellar, “On the virtual convexity of the domain and range of a nonlinear maximal monotone operator,” Math. Ann.,185, No. 2, 81–90 (1970).

  224. 224.

    R. T. Rockafellar, “Conjugate convex functions in optimal control and the calculus of variations,” J. Math. Anal. Appl.,32, No. 1, 174–222 (1970).

  225. 225.

    R. T. Rockafellar, “Generalized Hamiltonian equations for convex problems of Lagrange,” Pac. J. Math.,33, No. 2, 411–427 (1970).

  226. 226.

    R. T. Rockafellar, “Maximality of sums of nonlinear monotone operators,” Trans. AMS,149, No. 1, 75–88 (1970).

  227. 227.

    R. T. Rockafellar, “State constraints in convex problems of Bolza,” SIAM J. Control Optim.,10, No. 4, 691–715 (1972).

  228. 228.

    R. T. Rockafellar, “On the maximal monotonicity of subdifferential mappings,” Pac. J. Math.,33, No. 1, 209–216 (1970).

  229. 229.

    R. T. Rockafellar, “Integral functionals, normal integrands and measurable selections,” Lect. Notes Math.,543, 157–207 (1976).

  230. 230.

    R. T. Rockafellar, “Monotone operators and augmented Lagrangian methods in nonlinear programming,” in: Nonlinear Programming, 3, 3rd Symp., Madison, Wise, 1977, New York (1978), pp. 1–25.

  231. 231.

    R. T. Rockafellar, The Theory of Subgradients and Its Applications to Problems of Optimization, Montreal Univ. Press, Montreal (1978).

  232. 232.

    R. T. Rockafeller, “Duality in optimal control,” Lect. Notes Math.,680, 219–257 (1978).

  233. 233.

    R. T. Rockafellar, “Directionally Lipschitzian functions and subdifferential calculus,” Proc. London Math. Soc.,39, No. 2, 331–355 (1979).

  234. 234.

    R. T. Rockafellar, “Clarke's tangent cones and the boundaries of closed sets in Rn,” Nonlinear Analysis, Theory, Methods, and Appl.,3, No. 1, 145–154 (1979).

  235. 235.

    R. T. Rockafellar, “Generalized directional derivatives and subgradients of nonconvex functions,“ Can. J. Math.,32, No. 1, 257–280 (1980).

  236. 236.

    S. Simons, “Extended and sandwich versions of the Hahn-Banach theorem,” J. Math. Anal. Appl.,21, No. 1, 112–122 (1968).

  237. 237.

    W. Stadler, “A survey of multicriteria optimization or the vector maximum problem, Part I. 1776–1960,” J. Optimiz. Theory Appl.,29, No. 1, 1–52 (1979).

  238. 238.

    Ch. Stegall, “The duality between Asplund spaces and spaces with the Radon-Nikodym property,” Israel J. Math.,29, No. 4, 408–412 (1978).

  239. 239.

    M. Thera, Etude des fonctions convexes vectorielles semicontinues, Thèse de spéccialité, Pau (1978).

  240. 240.

    M. Thera, “ɛ-Subdifferential calculus for convex operators,” C. R. Acad. Sci.,AB290, No. 12–24, A549-A551 (1980).

  241. 241.

    T. Thibault, “Problème de Bolza dans un espace de Banach séparable,” C. R. Acad. Sci.,282, No. 22, A1303–1306 (1976).

  242. 242.

    L. Thibault, “Quelques propriétés des sous-differentiels de fonctions réeles localement Lipschitzennes définies sur un espace de Banach séparable,” C. R. Acad. Sci.,282, No. 10, A507-A510 (1976).

  243. 243.

    L. Thibault, “Sous-differentiels de fonctions vectorielles compactement Lipschitzennes,” C. R. Acad. Sci.AB286, No. 21, A995-A999 (1978).

  244. 244.

    L. Thibault, “Fonctions compactment Lipschitzennes et programmation mathematique,” C. R. Acad. Sci., AB287, No. 4, A213-A216 (1978).

  245. 245.

    L. Thibault, “Calcul sous-différential et calcul des variations in dimension infinite,” Bull. Soc. Math. France Mem., No. 60, 161–175 (1979).

  246. 246.

    L. Thibault, “Cones tangents et epi-différentiels de fonctions vectorielles,” Preprint, Dept. Math., Univ. Pau, France (1979).

  247. 247.

    L. Thibault, “Epidifférentials of vector-valued functions,” C. R. Acad. Sci.,AB290, No. 2, A87-A90 (1980).

  248. 248.

    T.-O. To, “The equivalence of least upper bound property and Hahn-Banach extension property in ordered vector spaces,” Proc. AMS,30, No. 2, 287–296 (1971).

  249. 249.

    F. Topsoe, “The naive approach to the Hahn-Banach theorem,” Comment. Math., Tom spec, honor, Ladislav Orlicz, Vol. 1, Warsaw (1978), pp. 315–330.

  250. 250.

    C. Ursescu, “Multifunctions with convex closed graph,” Czechosl. Math. J.,25, No. 3, 438–441 (1975).

  251. 251.

    M. Valadier, “Sous-differentiabilité de fonctions convexes à valeurs dans un espace vectoriel ordonné,” Math. Scand.,30, No. 1, 65–74 (1972).

  252. 252.

    G. Vincent-Smith, “The Hahn-Banach theorem for modules,” Proc. London Math. Soc,57, No. 1, 72–90 (1967).

  253. 253.

    J. Warga, “Derivative containers, inverse functions, and controllability,” Proc. of MRC Symp. on the Calculus of Variations and Optimal Control, 1975, D. L. Russel (ed.), Academic Press, New York (1976).

  254. 254.

    J. Warga, “An implicit function theorem without differentiability,” Proc. AMS,69, No. 1, 65–69 (1978).

  255. 255.

    H. WeisÄcker, “Sublineare abbildungen and eine Konvergenzsatz von Banach,” Math. Ann.,212, No. 2, 165–171 (1974).

  256. 256.

    J. D. Weston, “On the comparison of topologies,” J. London Math. Soc,32, No. 3, 342–354 (1957).

  257. 257.

    J. Wilhelm, “Objective and multiobjective decision making under uncertainty,” Lect. Notes Econ. Math. Systems,112 (1975).

  258. 258.

    Y.-Ch. Wong and K.-F. Ng, Partially Ordered Topological Spaces, Claredon Press, Oxford (1973).

  259. 259.

    J. Zowe, “Subdifferentiability of convex functions with values in an ordered vector space,” Math. Scand.,34, No. 1, 69–83 (1974).

  260. 260.

    J. Zowe, “A duality theorem for a convex programming problem in ordered complete vector lattices,” J. Math. Anal. Appl.,50, No. 2, 273–287 (1975).

  261. 261.

    J. Zowe, “The saddle-point theorem of Kuhn and Tucker in ordered vector spaces,” J. Math. Anal. Appl.,57, No. 1, 41–45 (1977).

  262. 262.

    J. Zowe, “Sandwich theorem for convex operators with values in ordered vector spaces,” J. Math. Anal. Appl.,66, No. 2, 282–296 (1978).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Vol. 19, pp. 155–206, 1982.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kusraev, A.G., Kutateladze, S.S. Local convex analysis. J Math Sci 26, 2048–2087 (1984). https://doi.org/10.1007/BF01084446

Download citation

Keywords

  • Extremal Problem
  • Nonlinear Operator
  • Convex Analysis
  • Convex Operator
  • Sublinear Operator