Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gauge fields and holomorphic geometry

  • 74 Accesses

  • 7 Citations


The paper contains an exposition of the geometric theory of Yang-Mills equations in the language of Penrose twistors. A cohomological interpretation of the curvature of the connection and the current of the general holomorphic Yang-Mills field is given. Complex singularities of instanton fields are investigated.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. A. Beilinson, “Coherent sheaves on Pn and problems of linear algebra,” Funkts. Anal. Ego Prilozhen.,12, No. 3, 68–69 (1978).

  2. 2.

    N. N. Bernshtein, I. M. Gel'fand, and S. I. Gel'fand, “Algebraic bundles on Pn and problems of linear algebra,” Funkts. Anal. Ego Prilozhen.,12, No. 3, 66–67 (1978).

  3. 3.

    V. G. Drinfel'd and Yu. I. Manin, “Instantons and sheaves on CP3,” Funkts. Anal. Ego. Prilozhen.,13, No. 2, 59–74 (1979).

  4. 4.

    V. G. Drinfel'd and Yu. I. Manin, “Yang-Mills fileds, instantons, tensor products of instantons,” Yad. Fiz.,29, No. 6, 1646–1654 (1979).

  5. 5.

    V. G. Drinfel'd and Yu, I. Manin, “A description of instantons. II,” in: Proceedings of the International Seminar on Problems of High-Energy Physics and Quantum Field Theory Vol. 1, Serpukhov (1978), pp. 71–92.

  6. 6.

    M. F. Atiyah, Geometry of Yang-Mills fields, 1978 Fermi Lectures, Pisa (1979).

  7. 7.

    M. F. Atiyah, “Green's function for self-dual 4-manifolds,” Preprint, Oxford (1979).

  8. 8.

    M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Yu. I. Manin, “Construction of instantons,” Phys. Lett.,65A, 185–187 (1978).

  9. 9.

    M. F. Atiya, N, J. Hitchin, and I. M. Singer, “Self-duality in four-dimensional Riemannian geometry,” Proc. R. Soc. London A.,362, 425–461 (1978).

  10. 10.

    M. F. Atiyah and R. S. Ward, “Instantons and algebraic geometry,” Commun. Math. Phys.,55, 117–124 (1977).

  11. 11.

    W. Barth, “Moduli of vector bundles on the projective plane,” Invest, Math.,42, 63–91 (1977).

  12. 12.

    A. Belavin, A. Polyakov, Schwartz, and Y. Tyupkin, “Pseudoparticle solutions of the Yang-Mills equations,” Phys. Lett.,59B, 85–87 (1975).

  13. 13.

    S. Coleman, “The uses of instantons,” Preprint, Erice Summer School (1977).

  14. 14.

    P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Springer-Verlag, Lect. Notes Math., No. 163 (1970).

  15. 15.

    V. G. Drinfeld and Yu. I. Manin, “A description of instantons,” Commun. Math. Phys.,63, 177–192 (1978).

  16. 16.

    R. P. Feynman, “Gauge theories,” in: Les Houches Session XIX, 1976, North-Holland (1977), pp. 123–204.

  17. 17.

    P. S. Green, J. Isenberg, and P. Jasskin, “Non-self-dual gauge fields,” Phys. Lett.,78B, 462–464 (1978).

  18. 18.

    P. A. Griffiths. “The extension problem in complex analysis. II,” Am. J. Math.,88, 366–446 (1966).

  19. 19.

    P. A. Griffiths and J. Harris, Introduction to Algebraic Geometry, Wiley, New York (1979).

  20. 20.

    R. Hermann, Yang-Mills, Kaluza-Klein, and the Einstein Program, Math., Sci. Press, Brookline, Mass. (1978).

  21. 21.

    L. P. Hughston, Twistors and Particles, Springer Lecture Notes in Physics, No. 97 (1979).

  22. 22.

    J. Isenberg and P. Yasskin, “Twistor description of non-self-dual Yang-Mills fields,” Preprint, Univ. Maryland (1979).

  23. 23.

    R. L. Mills and C. N. Yang, “Conservation of isotopic spin and isotopic gauge invariance,” Phys. Rev.,96, 191–192 (1954).

  24. 24.

    M. Mulase, “Poles of instantons and jumping lines of algebraic vector bundles on P3,” Proc. Jpn. Acad.,55, Ser. A, 185–189 (1979).

  25. 25.

    R. Penrose, “Twistor theory, its aims and achievements,” in: Quantum Gravity, Oxford Univ. Press (1975), pp. 268–407.

  26. 26.

    S. Sternberg, “On the role of field theories in our physical conception of geometry,” in: Springer-Verlag, Lect. Notes Math., No. 676 (1978), pp. 1–80.

  27. 27.

    R. S. Ward, “On self-dual gauge fields,” Phys. Lett.,61A, 81–82 (1977).

  28. 28.

    R. O. Wells, “Complex manifolds and mathematical physics,” Preprint, Rice Univ. (1977).

  29. 29.

    R. O. Wells, “Cohomology and the Penrose transform,” Preprint, Lawrence, Kansas (1978).

  30. 30.

    H. Weyl, “Gravitation und Elektrizitat,” Sitzungsberichte der Königl. Preuss. Akad. Wiss.,26, 465–480 (1918).

  31. 31.

    E. Witten, “An interpretation of classical Yang-Mills theory,” Preprint, Harvard University (1978).

  32. 32.

    T. T. Wu, “Introduction to gauge theory,” in: Springer-Verlag Lect. Notes Math., No. 676 (1978), pp. 161–170.

Download references

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Vol. 17, pp. 3–55, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manin, Y.I. Gauge fields and holomorphic geometry. J Math Sci 21, 465–507 (1983). https://doi.org/10.1007/BF01084284

Download citation


  • Gauge Field
  • Geometric Theory
  • Complex Singularity
  • Cohomological Interpretation
  • Penrose Twistor