Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Representations of complex semisimple lie groups

  • 50 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    É. L. Akim and A. A. Levin, “Generating function for the Clebsch-Gordan coefficients,” Dokl. Akad. Nauk SSSR,138, No. 3, 503–505 (1961).

  2. 2.

    F. A. Berezin, “Laplace operators on semisimple Lie groups,” Dokl. Akad. Nauk SSSR,107, No. 1, 9–12 (1956).

  3. 3.

    F. A. Berezin, “Representations of complex semisimple Lie groups in a Banach space,” Dokl. Akad. Nauk SSSR,110, No. 6, 897–900 (1956).

  4. 4.

    F. A. Berezin, “Laplace operators on semisimple Lie groups,” Trudy Moskov. Matem. Obshch.,6, 371–463 (1957).

  5. 5.

    F. A. Berezin, “Laplace operators on semisimple Lie groups and certain symmetric spaces,” Usp. Matem. Nauk,12, No. 1, 152–156 (1957).

  6. 6.

    F. A. Berezin, “Letter to the editor, re: ‘Laplace operators on semisimple Lie groups’,” Trudy Moskov. Matem. Obshch.,12, 453–466 (1963).

  7. 7.

    F. A. Berezin and I. M. Gel'fand, “Remarks on the theory of spherical functions on symmetric Riemannian manifolds,” Trudy Moskov. Matem. Obshch.,5, 311–351 (1956).

  8. 8.

    F. A. Berezin, I. M. Gel'fand, M. I. Graev, and M. A. Naimark, “Representations of groups,” Usp. Matem. Nauk,11, No. 6, 13–40 (1956).

  9. 9.

    F. A. Berezin, I. M. Gel'fand, M. I. Graev, and M. A. Naimark, “Representations of Lie groups,” in: Proc. Third All-Union Mathematics Congr., 1956 [in Russian], Vol. 3, Akad. Nauk SSSR, Moscow (1958), pp. 65–72.

  10. 10.

    F. A. Berezin and F. I. Karpelevich, “Zonal spherical functions and Laplace operators on certain symmetric spaces,” Dokl. Akad. Nauk SSSR,118, No. 1, 9–12 (1958).

  11. 11.

    I. N. Bernshtein, I. M. Gel'fand, and S. I. Gel'fand, “Structure of representations generated by vectors of principal weight,” Funktsional. Analiz i Ego Prilozhen.,5, No. 1, 1–9 (1971).

  12. 12.

    A. N. Bogaevskii, “Harmonic functions on GL(2),” Dokl. Akad. Nauk SSSR,153, No. 4, 751–753 (1963).

  13. 13.

    F. Bruhat, “Travaux de Harish-Chandra,” in: Sémin. Bourbaki, 9e année: 1956–57 (2nd ed.), Secrét. Math., Paris (1959), pp. 143/1–143/9.

  14. 14.

    N. Ya. Vilenkin, “Theory of associated spherical functions on Lie groups,” Matem, Sborn.,42, No. 4, 485–496 (1957).

  15. 15.

    N. Ya. Vilenkin, “Matrix elements of irreducible unitary representations of a group of Lobachevskii space motions and the generalized Mehler-Fock transforms,” Dokl. Akad. Nauk SSSR,118, No. 2, 219–222 (1958).

  16. 16.

    N. Ya. Vilenkin, “Special functions associated with representations of class 1 of groups of motions in constant-curvature spaces,” Trudy Moskov. Matem. Obshch.,12, 185–257 (1963).

  17. 17.

    N. Ya. Vilenkin, Special Functions and the Theory of Group Representations [in Russian], Nauka, Moscow (1965), 588 pages.

  18. 18.

    N. Ya. Vilenkin and Ya. A. Smorodinskii, “Invariant decompositions of relativistic amplitudes,” Zh. Éksp. Teor. Fiz.,46, No. 5, 1793–1808 (1964).

  19. 19.

    A. M. Gavrilik, “Clebsch-Gordan coefficients of SL(2, C),” Teor. i Matem. Fiz.,11, No. 1, 56–68 (1972).

  20. 20.

    I. M. Gel'fand, “Center of an infinitesimal group ring,” Matem. Sborn.,26, No. 1, 103–112 (1950).

  21. 21.

    I. M. Gel'fand, “Structure of the ring of rapidly decreasing functions on a Lie group,” Dokl. Akad. Nauk SSSR,124, No. 1, 19–21 (1959).

  22. 22.

    I. M. Gel'fand, “Integral geometry and its relationship to representation theory,” Usp. Matem. Nauk,15, No. 2, 155–169 (1960).

  23. 23.

    I. M. Gel'fand and M. I. Graev, “Analog of the Plancherel formula for classical groups,” Trudy Moskov. Matem. Obshch.,4, 375–404 (1955).

  24. 24.

    I. M. Gel'fand and M. I. Graev, “Analog of the Plancherel formula for the classical groups,” Usp. Matem. Nauk,10, No. 1, 205–206 (1955).

  25. 25.

    I. M. Gel'fand and M. I. Graev, “Fourier transforms of rapidly decreasing functions on complex semisimple Lie groups,” Dokl. Akad. Nauk SSSR,131, No. 3, 496–499 (1960).

  26. 26.

    I. M. Gel'fand and M. I. Graev, “Decomposition of representations of the Lorentz group in spaces of functions defined on symmetric spaces, into irreducible representations,” Dokl. Akad. Nauk SSSR,127, No. 2, 250–253 (1959).

  27. 27.

    I. M. Gel'fand and M. I. Graev, “Geometry of homogeneous spaces and decomposition of representations in homogeneous spaces into irreducible representations,” Usp. Matem. Nauk,14, No. 2, 230–233 (1959).

  28. 28.

    I. M. Gel'fand and M. I. Graev, “Geometry of homogeneous spaces, group representations in homogeneous spaces, and related aspects of integral geometry (I),” Trudy Moskov. Matem. Obshch.,8, 321–390 (1959).

  29. 29.

    I. M. Gel'fand and M. I. Graev, “Corrections to the article: ‘Geometry of homogeneous spaces, group representations in homogeneous spaces, and related aspects of integral geometry (I)‘,” Trudy Moskov. Matem. Obshch.,9, 562 (1960).

  30. 30.

    I. M. Gel'fand and M. I. Graev, “Category of group representations and the classification problem for irreducible representations,” Dokl. Akad. Nauk SSSR,146, No. 4, 757–760 (1962).

  31. 31.

    I. M. Gel'fand and M. I. Graev, “Application of the method of orispheres to the spectral analysis of functions in real and imaginary Lobachevskii spaces,” Trudy Moskov. Matem. Obshch.,11, 243–308 (1962).

  32. 32.

    I. M. Gel'fand and M. I. Graev, “Finite-dimensional irreducible representations of the unitary and complete linear groups and related special functions,” Izv. Akad. Nauk SSSR, Ser. Matem.,29, No. 6, 1329–1356 (1965).

  33. 33.

    I. M. Gel'fand and M. I. Graev, “Complexes of k-dimensional hyperplanes in Cn and the Plancherel formula for GL(n, C),” Dokl. Akad. Nauk SSSR,179, No. 3, 522–525 (1968).

  34. 34.

    I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry and Related Aspects of Representation Theory [in Russian], Fizmatgiz, Moscow (1962), 656 pages.

  35. 35.

    I. M. Gel'fand, M. I. Graev, and V. A. Ponomarëv, “Classification of the linear representations of SL(2, C),” Dokl. Akad. Nauk SSSR,194, No. 5, 1002–1005 (1970).

  36. 36.

    I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Theory of Representations and Automorphic Functions [in Russian], Nauka, Moscow (1966), 512 pages.

  37. 37.

    I. M. Gel'fand and A. A. Kirillov, “Structure of the Lorentz skew field connected with a decomposable semisimple Lie algebra,” Funktsional. Analiz i Ego Prilozhen.,3, No. 1, 7–26 (1969).

  38. 38.

    I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representation of the Rotation and Lorentz Groups with Applications [in Russian], Fizmatgiz, Moscow (1958), 368 pages.

  39. 39.

    I. M. Gel'fand and M. A. Naimark, “Unitary representations of the complex unimodular group,” Dokl. Akad. Nauk SSSR,54, No. 3, 195–198 (1946).

  40. 40.

    I. M. Gel'fand and M. A. Naimark, “Principal series of irreducible representations of the complex unimodular group,” Dokl. Akad. Nauk SSSR,56, No. 1, 3–5 (1947).

  41. 41.

    I. M. Gel'fand and M. A. Naimark, “Supplementary and degenerate series of representations of the complex unimodular group,” Dokl. Akad. Nauk SSSR,58, No. 8, 1577–1580 (1947).

  42. 42.

    I. M. Gel'fand and M. A. Naimark, “Unitary representations of the Lorentz group,” Izv. Akad. Nauk SSSR, Ser. Matem.,11, No. 5, 411–504 (1947).

  43. 43.

    I. M. Gel'fand and M. A. Naimark, “Unitary representations of semisimple Lie groups (I),” Matem. Sborn.,21, No. 3, 405–434 (1947).

  44. 44.

    I. M. Gel'fand and M. A. Naimark, “The trace in the principal and supplementary series of representations of the complex unimodular group,” Dokl. Akad. Nauk SSSR,61, No. 1, 9–11 (1948).

  45. 45.

    I. M. Gel'fand and M. A. Naimark, “Relationship between representations of a complex semisimple Lie group and its maximal compact subgroup,” Dokl. Akad. Nauk SSSR,13, No. 3, 255–228 (1948).

  46. 46.

    I. M. Gel'fand and M. A. Naimark, “Analog of the Plancherel formula for the complex unimodular group,” Dokl. Akad. Nauk SSSR,63, No. 6, 609–612 (1948).

  47. 47.

    I. M. Gel'fand and M. A. Naimark, “Relationship between unitary representations of the complex unimodular group and its unitary subgroup,” Izv. Akad. Nauk SSSR, Ser. Matem.,14, No. 3, 239–260 (1950).

  48. 48.

    I. M. Gel'fand and M. A. Naimark, “Unitary representations of the classical groups,” Trudy Matem. Inst. Akad. Nauk SSSR,36, 1–288 (1950).

  49. 49.

    I. M. Gel'fand and M. A. Naimark, “Unitary representations of the unimodular group containing an identity representation of the unitary subgroup,” Trudy Moskov. Matem. Obshch.,1, 423–475 (1952).

  50. 50.

    I. M. Gel'fand and V. A. Ponomarëv, “Category of Harish-Chandra modules over the Lie algebra of the Lorentz group,” Dokl. Akad. Nauk SSSR,176, No. 2, 243–246 (1967).

  51. 51.

    I. M. Gel'fand and V. A. Ponomarëv, “Classification of the indecomposable infinitesimal representations of the Lorentz group,” Dokl. Akad. Nauk SSSR,176, No. 3, 502–505 (1967).

  52. 52.

    I. M. Gel'fand and V. A. Ponomarëv, “Indecomposable representations of the Lorentz group,” Usp. Matem. Nauk,23, No. 2, 3–60 (1968).

  53. 53.

    I. M. Gel'fand and I. I. Pyatetskii-Shapiro, “Theory of representations and theory of automorphic functions,” Usp. Matem. Nauk,14, No. 2, 171–194 (1959).

  54. 54.

    I. M. Gel'fand and I. I. Pyatetskii-Shapiro, “Automorphic functions and representation theory,” Trudy Moskov. Matem. Obshch.,12, 389–412 (1963).

  55. 55.

    I. M. Gel'fand and S. V. Fomin, “Geodesic flows on manifolds of constant negative curvature,” Usp. Matem. Nauk,7, No. 1, 118–137 (1952).

  56. 56.

    I. M. Gel'fand and M. L. Tsetlin, “Finite-dimensional representations of the group of unimodular matrices,” Dokl. Akad. Nauk SSSR,71, No. 5, 825–828 (1950).

  57. 57.

    I. M. Gel'fand and M. L. Tsetlin, “Finite-dimensional representations of the group of orthogonal matrices,” Dokl. Akad. Nauk SSSR,71, No. 6, 1017–1020 (1950).

  58. 58.

    I. M. Gel'fand and A. M. Yaglom, “General relativistic invariant equations and infinitedimensional representations of the Lorentz group,” Zh. Éksp. Teor. Fiz.,8, 703–733 (1948).

  59. 59.

    S. G. Gindikin, “Analysis in homogeneous domains,” Usp. Matem. Nauk,19, No. 4, 3–92 (1964).

  60. 60.

    S. G. Gindikin and F. I. Karpelevich, “Plancherel measure for Riemann spaces of nonpositive curvature,” Dokl. Akad. Nauk SSSR,145, No. 2, 252–255 (1962).

  61. 61.

    R. Godement, “A theory of spherical functions (I),” (Russian translation of [175]), Matematika,5, No. 5, 55–87 (1961).

  62. 62.

    V. Ya. Golodets, “Matrix elements of irreducible unitary and spinor representations of the proper Lorentz group,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Tekh. Nauk, No. 1, 19–28 (1961).

  63. 63.

    L. Gårding, “Vecteurs analytiques dans les représentations des groupes des Lie,” Bull. Soc. Math. France,88, 73–93 (1960).

  64. 64.

    I. M. Graev, “Computation of integrals with respect to classes of conjugate elements in the group of complex matrices,” Trudy Moskov. Matem. Obshch.,14, 279–298 (1965).

  65. 65.

    I. M. Graev, F. I. Karpelevich, and A. A. Kirillov, “Theory of representations of Lie groups,” in: Proc. Fourth All-Union Mathematics Congr., 1961 [in Russian], Vol. 2, Nauka, Leningrad (1964), pp. 275–281.

  66. 66.

    I. M. Graev and A. A. Kirillov, “Theory of group representations,” in: Proc. Internat. Congr. Mathematicians [in Russian], Mir, Moscow (1968), pp. 373–379.

  67. 67.

    E. A. Gutkin, “Principal series representations of a complex semisimple Lie group,” Funktional. Analiz i Ego Prilozhen.,4, No. 2, 32–37 (1970).

  68. 68.

    J. Dixmier, “Quelques résultats d'Harish-Chandra,” Sémin. Bourbaki, 4e année: 1951–52 (2nd ed.), Secrét. Math., Paris (1959), pp. 50/1–50/5; 58/1–58/7.

  69. 69.

    J. Dixmier, “Unitary representations of Lie algebra groups,” (Russian translation of [161]), Matematika,8, No. 6, 69–79 (1964).

  70. 70.

    A. Z. Dolginov and I. N. Toptygin, “Clebsch-Gordan expansion for infinite-dimensional representations of the Lorentz group,” Zh. Éksp. Teor. Fiz.,35, No. 3, 794–796 (1958).

  71. 71.

    D. P. Zhelobenko, “Description of a certain class of representations of the Lorentz group,” Dokl. Akad. Nauk SSSR,121, No. 4, 586–589 (1958).

  72. 72.

    D. P. Zhelobenko, “Structure of the group ring of the Lorentz group,” Dokl. Akad. Nauk SSSR,126, No. 3, 482–485 (1959).

  73. 73.

    D. P. Zhelobenko, “Linear representations of the Lorentz group,” Dokl. Akad. Nauk SSSR,126, No. 5, 935–938 (1959).

  74. 74.

    D. P. Zhelobenko, “Description of all irreducible representations of an arbitrary connected Lie group,” Dokl. Akad. Nauk SSSR,139, No. 6, 1291–1294 (1961).

  75. 75.

    D. P. Zhelobenko, “Classical groups: spectral analysis of finite-dimensional representations,” Usp. Matem. Nauk,17, No. 1, 27–120 (1962).

  76. 76.

    D. P. Zhelobenko, “Theory of linear representations of complex and real Lie groups,” Trudy Moskov. Matem. Obshch.,12, 53–98 (1963).

  77. 77.

    D. P. Zhelobenko, “Elementary proof of a formula of Gel'fand-Naimark,” Usp. Matem. Nauk,18, No. 6, 197–200 (1963).

  78. 78.

    D. P. Zhelobenko, “Harmonic analysis of functions on semisimple Lie groups (I),” Izv. Akad. Nauk SSSR, Ser. Matem.,27, No. 6, 1343–1394 (1963).

  79. 79.

    D. P. Zhelobenko, “Infinitely differentiable vectors in representation theory,” Vestnik Moskov. Univ., Matem. Mekhan., No. 1, 3–10 (1965).

  80. 80.

    D. P. Zhelobenko, “Structure of the elementary representations of a complex semisimple Lie group,” Dokl. Akad. Nauk SSSR,170, No. 5, 1009–1012 (1966).

  81. 81.

    D. P. Zhelobenko, “Operational calculus and theorems of Paley-Wiener type for a complex semisimple Lie group,” Dokl. Akad. Nauk SSSR,170, No. 6, 1243–1246 (1966).

  82. 82.

    D. P. Zhelobenko, “Analog of the Cartan-Weyl theory for infinite-dimensional representations of a complex semisimple Lie group,” Dokl. Akad. Nauk SSSR,175, No. 1, 24–27 (1967).

  83. 83.

    D. P. Zhelobenko, “Symmetry in the class of elementary representations of a complex semi-simple Lie group,” Funktsional. Analiz i Ego Prilozhen.,1, No. 2, 15–38 (1967).

  84. 84.

    D. P. Zhelobenko, “Analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group,” Izv. Akad. Nauk SSSR, Ser. Matem.,32, No. 1, 108–133 (1968).

  85. 85.

    D. P. Zhelobenko, “Operational calculus on a complex semisimple Lie group,” Izv. Akad. Nauk SSSR, Ser. Matem.,33, No. 5, 931–973 (1969).

  86. 86.

    D. P. Zhelobenko, “Harmonic analysis of functions on semisimple Lie groups (II),” Izv. Akad. Nauk SSSR, Ser. Matem.,33, No. 6, 1255–1295 (1969).

  87. 87.

    D. P. Zhelobenko, “Irreducible representations of class 0 of a complex semisimple Lie group,” Funktsional. Analiz i Ego Prilozhen.,4, No. 2, 85–86 (1970).

  88. 88.

    D. P. Zhelobenko, “Classification of the extremally irreducible and normally irreducible representations of a connected complex semisimple Lie group,” Izv. Akad. Nauk SSSR, Ser. Matem.,35, No. 3, 573–599 (1971).

  89. 89.

    D. P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Nauka, Moscow (1970), 664 pages.

  90. 90.

    D. P. Zhelobenko, “Cyclic modules for a complex semisimple Lie group,” Izv. Akad. Nauk SSSR, Ser. Matem.,37, No. 3, 502–515 (1973).

  91. 91.

    D. P. Zhelobenko and M. A. Naimark, “Description of the completely irreducible representations of a complex semisimple Lie group,” Dokl. Akad. Nauk SSSR,171, No. 1, 25–28 (1966).

  92. 92.

    D. P. Zhelobenko and M. A. Naimark, “Description of the completely irreducible representations of a complex semisimple Lie group,” Izv. Akad. Nauk SSSR, Ser. Matem.,34, No. 1, 57–82 (1970).

  93. 93.

    R. S. Ismagilov, “Description of the unitary representations of the Lorentz group in a space with indefinite metric,” Dokl. Akad. Nauk SSSR,158, No. 2, 268–270 (1964).

  94. 94.

    R. S. Ismagilov, “Unitary representations of the Lorentz group in a space with indefinite metric,” Izv. Akad. Nauk SSSR, Ser. Matem.,30, No. 3, 497–522 (1966).

  95. 95.

    R. S. Ismagilov, “Lorentz group representations unitary in indefinite metric,” Trudy Moskov. Inst. Élektron. Mashinostr., No. 2, 492–504 (1966).

  96. 96.

    R. S. Ismagilov, “A class of linear representations of complex semisimple Lie groups,” Funktsional. Analiz i Ego Prilozhen.,1, No. 4, 69–74 (1967).

  97. 97.

    R. S. Ismagilov, “Correction to the article: ‘A class of linear representations of complex semisimple Lie groups’,” Funktsional. Analiz i Ego Prilozhen.,2, No. 3, 90 (1968).

  98. 98.

    D. A. Kazhdan, “Relationship of the dual space of a group to the structure of its closed subgroups,” Funktsional. Analiz i Ego Prilozhen.,1, No. 1, 71–74 (1967).

  99. 99.

    P. Cartier, “Représentations des groupes de Lie (d'après Harish-Chandra),” Sémin. Bourbaki, 6e année: 1953–54 (2nd ed.), Secrét. Math., Paris (1959), pp. 96/1–96/10.

  100. 100.

    P. Cartier, “On Weyl's character formula,” Bull. Amer. Math. Soc.,67, No. 2, 228–230 (1961).

  101. 101.

    G. I. Kats, “Linear representations of the unimodular group,” Nauk Zap. Zhitomirs'k. Derzh. Pedogog. Inst., Ser. Fiz.-Matem.,3, 7–61 (1957).

  102. 102.

    A. A. Kirillov, “Infinite-dimensional representations of a complete matrix group,” Dokl. Akad. Nauk SSSR,144, No. 1, 37–39 (1962).

  103. 103.

    A. A. Kirillov, “Characters of unitary representations of Lie groups,” Funktsional. Analiz i Ego Prilozhen.,2, No. 2, 40–55 (1968).

  104. 104.

    A. A. Kirillov, “Method of orbits in the theory of unitary representations of Lie groups,” Funktsional. Analiz i Ego Prilozhen.,2, No. 1, 96–98 (1968).

  105. 105.

    A. A. Kirillov, “Constructions of unitary irreducible representations of Lie groups,” Vestnik Moskov. Univ., Matem. Mekhan., No. 2, 41–51 (1970).

  106. 106.

    É. V. Kissin, “Decomposition of a tensor product of irreducible maximally degenerate representations of the group of complex matrices of order n with unit determinant,” Dokl. Akad. Nauk SSSR,190, No. 4, 763–766 (1970).

  107. 107.

    É. V. Kissin, “Decomposition of a tensor product of certain representations of SL(n, C) into irreducible representations,” Usp. Matem. Nauk,26, No. 2, 225–226 (1971).

  108. 108.

    É. V. Kissin, “Decomposition of the restriction of an SL(n, C) representation to the subgroup SL(3, C), into irreducible representations,” Trudy Moskov. Inst. Radiotekh. Élektron. i Avtomat., No. 52, 37–46 (1971).

  109. 109.

    A. U. Klimyk, “Multiples of weights of representations and multiples of representations of semisimple Lie algebras,” Dokl. Akad. Nauk SSSR,177, No. 5, 1001–1004 (1967).

  110. 110.

    V. I. Kolomytsev, “Decomposition of irreducible unitary representations of SL(2, C) restricted to the subgroup SU(1, 1); supplementary series,” Teor. i Matem. Fiz.,2, No. 2, 210–229 (1970).

  111. 111.

    B. Kostant, “A formula for the multiplicity of a weight,” Proc. Nat. Acad. Sci. USA,44, 588–589 (1958).

  112. 112.

    B. Kostant, “On the existence and irreducibility of certain series of representations,” Bull. Amer. Math. Soc.,75, 627–642 (1969).

  113. 113.

    G. L. Litvinov, “Representations of groups in locally convex spaces and topological group algebras,” in: Proc. Semin. Vector and Tensor Analysis and Their Applications to Geometry, Mechanics, and Physics [in Russian], No. 16 (1972), pp. 267–349.

  114. 114.

    G. W. Mackey, “Infinite-dimensional group representations,” Bull. Amer. Math. Soc.,69, 628–686 (1963).

  115. 115.

    M. A. Naimark, “Description of all irreducible unitary representations of the classical groups,” Dokl. Akad. Nauk SSSR,84, No. 5, 883–886 (1952).

  116. 116.

    M. A. Naimark, “Irreducible linear representations of the proper Lorentz group,” Dokl. Akad. Nauk SSSR,97, No. 6, 969–972 (1954).

  117. 117.

    M. A. Naimark, “Linear representations of the Lorentz group,” Usp. Matem. Nauk,9, No. 4, 19–93 (1954).

  118. 118.

    M. A. Naimark, “A continuous analog of the Schur lemma,” Dokl. Akad. Nauk SSSR,98, No. 2, 185–188 (1954).

  119. 119.

    M. A. Naimark, “Description of all unitary representations of the complex classical groups (I),” Matem. Shorn.,35, No. 2, 317–356 (1954).

  120. 120.

    M. A. Naimark, “Description of all unitary representations of the complex classical groups (II),” Matem. Sborn.,37, No. 1, 121–140 (1955).

  121. 121.

    M. A. Naimark, “Continuous analog of the Schur lemma and its application to the Plancherel formula for complex classical groups,” Izv. Akad. Nauk SSSR, Ser. Matem.,20, No. 1, 3–16 (1956).

  122. 122.

    M. A. Naimark, “Irreducible representations of the complete Lorentz group,” Dokl. Akad. Nauk SSSR,112, No. 4, 583–586 (1957).

  123. 123.

    M. A. Naimark, Linear Representations of the Lorentz Group, Fizmatgiz, Moscow (1958), 376 pages [English ed.: Pergamon, New York (1964)].

  124. 124.

    M. A. Naimark, “Decomposition of a tensor product of principal series representations of the Lorentz group into irreducible representations,” Dokl. Akad. Nauk SSSR,119, No. 5, 872–875 (1958).

  125. 125.

    M. A. Naimark, “Decomposition of irreducible principal series representations of the complex unimodular group of order n into representations of the second-order complex unimodular group,” Dokl. Akad. Nauk SSSR,121, No. 4, 590–594 (1958).

  126. 126.

    M. A. Naimark, “Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations. Part I: Tensor product of principal series representations,” Trudy Moskov. Matem. Obshch.,8, 121–153 (1959).

  127. 127.

    M. A. Naimark, “Decomposition of the tensor product of a principal series representation and a supplementary series representation of the proper Lorentz group into irreducible representations,” Dokl. Akad. Nauk SSSR,125, No. 6, 1196–1199 (1959).

  128. 128.

    M. A. Naimark, “Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations. Part II: Tensor product of principal and supplementary series representations,” Trudy Moskov. Matem. Obshch.,9, 237–282 (1960).

  129. 129.

    M. A. Naimark, “Decomposition of the tensor product of two supplementary series representations of the proper Lorentz group into irreducible representations,” Dokl. Akad. Nauk SSSR,130, No. 2, 261–264 (1960).

  130. 130.

    M. A. Naimark, “Tensor product of supplementary series representations of the proper Lorentz group,” Dokl. Akad. Nauk SSSR,132, No. 5, 1027–1030 (1960).

  131. 131.

    M. A. Naimark, “Decomposition of a tensor product of irreducible representations of the Lorentz group into irreducible representations. Part III: Tensor product of supplementary series representations,” Trudy Moskov. Matem. Obshch.,10, 181–216 (1961).

  132. 132.

    M. A. Naimark, “Continuous analog of the Schur lemma,” in: Functional Analysis and Its Applications [in Russian], Akad. Nauk AzerbSSR, Baku (1961), p. 214.

  133. 133.

    M. A. Naimark, “Unitary representations of the Lorentz group in πk,” Dokl. Akad. Nauk SSSR,152, No. 5, 1064–1067 (1963).

  134. 134.

    M. A. Naimark, “Unitary representations of the Lorentz group in spaces with indefinite metric,” Matem. Sborn.,65, No. 2, 198–211 (1964).

  135. 135.

    M. A. Naimark, “Infinite-dimensional representations of groups and related problems,” in: Mathematical Analysis, Probability Theory and Control 1962 (Itogi Nauki) [in Russian], VINITI AN SSSR, Moscow (1964), pp. 38–92.

  136. 136.

    M. A. Naimark, “Unitary representations of noncompact groups,” in: High-Energy Physics and the Theory of Elementary Particles [in Russian], Naukova Dumka, Kiev (1967), pp. 185–215.

  137. 137.

    M. A. Naimark, “Decomposition of a unitary representation of a complex semisimple Lie group into irreducible representations,” Stud. Math.,31, No. 4, 383–398 (1968).

  138. 138.

    M. A. Naimark, “Criteria of irreducibility and discrete decomposability of a homogeneous representation of a locally compact group,” Dokl. Akad. Nauk SSSR,205, No. 5, 1040–1042 (1972).

  139. 139.

    M. A. Naimark, “Homogeneous and quasi-homogeneous representations of a locally compact group,” Izv. Akad. Nauk SSSR, Ser. Matem.,36, No. 5, 1020–1048 (1972).

  140. 140.

    M. A. Naimark, “Problems and results in the theory of representations of complex semisimple Lie groups,” in: Internat. Congr. Mathematicians, Nice, 1970 [in Russian], Nauka, Moscow (1972), pp. 220–224.

  141. 141.

    M. A. Naimark and R. S. Ismagilov, “Representations of groups and algebras in spaces with indefinite metric,” in: Progress in Mathematics, Vol. 10, Plenum Press, New York-London (1971), pp. 73–109.

  142. 142.

    E. Nelson, “Analytic vectors” (Russian translation of [219]), Matematika,6, No. 3, 89–131 (1962).

  143. 143.

    A. Orihara, “A method for the enumeration of all irreducible unitary representations of SL(2, C),” Sci. Papers Coll. Gen. Educ. Univ. Tokyo,18, No. 1, 1–12 (1968).

  144. 144.

    V. B. Ryvkin, “Representation of the Clebsch-Gordan coefficients by finite-difference analogs of the Jacobi polynomials,” Dokl. Akad. Nauk BSSR,3, No. 5, 183–185 (1959).

  145. 145.

    Ya. A. Smorodinskii and M. Khusar, “Representations of the Lorentz group and generalized spiral states,” Teor. i Matem. Fiz.,4, No. 3, 328–340 (1970).

  146. 146.

    Dzh. Khadzhiev, “Aspects of the theory of vector invariants,” Matem. Sborn.,72, No. 3, 420–435 (1967).

  147. 147.

    Harish-Chandra, Automorphic Forms on Semisimple Lie Groups (Lecture Notes in Mathematics, No. 62), Springer, Berlin-New York (1968), x + 138 pages.

  148. 148.

    Harish-Chandra, “Harmonic analysis on semisimple Lie groups,” in: Some Recent Advances in the Basic Sciences, Vol. 1, Belfer Grad. School Sci., Yeshiva Univ., New York (1966).

  149. 149.

    Harish-Chandra, “Some applications of the Schwartz space of a semisimple Lie group” (Russian translation of [198]), Supplement 3 to: Automorphic Forms on Semisimple Lie Groups [Russian translation], Mir, Moscow (1971).

  150. 150.

    I. S. Shapiro, “Decomposition of the wave function into irreducible representations of the Lorentz group,” Dokl. Akad. Nauk SSSR,106, No. 4, 657–660.

  151. 151.

    R. Steinberg, “A general Clebsch-Gordan theorem,” Bull. Amer. Math. Soc.,67, 406–407 (1961).

  152. 152.

    L. D. Éskin, “Remarks on Laplace operators on a unimodular group,” Izv. Vyssh. Ucheb. Zaved., Matem., No. 2, 259–269 (1959).

  153. 153.

    L. D. Éskin, “Matrix elements of irreducible representations of the Lorentz group,” Izv. Vyssh. Ucheb. Zaved., Matem., No. 6, 179–184 (1961).

  154. 154.

    F. Aribaud, “Une nouvelle démonstration d'un théoréme de R. Bott and B. Kostant,” Bull. Soc. Math. France,95, No. 3, 205–242 (1967–68).

  155. 155.

    V. Gargman, “Irreducible unitary representations of the Lorentz group,” Ann. Math.,48, No. 3, 568–640 (1947).

  156. 156.

    L. C. Biedenharn, “On the representations of the semisimple Lie groups. I. The explicit construction of invariants for the unimodular unitary group in N dimensions,” J. Math. Phys.,4, No. 3, 436–445 (1963).

  157. 157.

    F. Bruhat, “Sur les représentations induites des groupes de Lie,” Bull. Soc. Math. France,84, No. 2, 97–205 (1956).

  158. 158.

    P. Cartier, “Vecteurs analytiques,” in: Sémin. Bourbaki, 11e année: 1958–59 (2nd ed.), Fase. 3, Secrét. Math., Paris (1959), pp. 181/1–181/12.

  159. 159.

    P. Cartier and J. Dixmier, “Vecteurs analytiques dans les représentations de groupes de Lie,” Amer. J. Math.,80, No. 1, 131–145 (1958).

  160. 160.

    M. Demazure, “Une démonstration algébrique d'un théorème de Bott,” Invent. Math.,5, No. 4, 349–356 (1968).

  161. 161.

    J. Dixmier, “Sur les représentations unitaires des groupes de Lie algébriques,” Ann. Inst. Fourier,7, No. 3, 315–328 (1957).

  162. 162.

    J. Dixmier, “Idéaux primitifs dans l'algébre enveloppante d'une algébre de Lie semisimple complexe,” Compt. Rend.,271, No. 3, A134-A136 (1970).

  163. 163.

    J. Dixmier, “Idéaux primitifs dans l'algébre enveloppante d'une algébra de Lie semisimple complexe,” Compt. Rend.,272, No. 25, A1628-A1630 (1971).

  164. 164.

    J. Dixmier, “Idéaux maximaux dans l'algèbre enveloppante d'une algèbre de Lie semisimple complexe,” Compt. Rend.,274, No. 3, A228-A230 (1972).

  165. 165.

    L. Ehrenpreis and F. I. Mautner, “Uniformly bounded representations of groups,” Proc. Nat. Acad. Sci. USA,41, No. 4, 231–233 (1955).

  166. 166.

    L. Ehrenpreis and F. I. Mautner, “Some properties of the Fourier transform on semisimple Lie groups (I),” Ann. Math.,61, No. 3, 406–439 (1955).

  167. 167.

    L. Ehrenpreis and F. I. Mautner, “Some properties of the Fourier transform on semisimple Lie groups (II),” Trans. Amer. Math. Soc.,84, No. 1, 1–55 (1957).

  168. 168.

    L. Ehrenpreis and F. I. Mautner, “Some properties of the Fourier transform on semisimple Lie groups (III),” Trans. Amer. Math. Soc.,90, No. 3, 431–484 (1959).

  169. 169.

    J. M. G. Fell, “Nonunitary dual spaces of groups,” Acta Math.,114, Nos. 3–4, 267–310 (1965).

  170. 170.

    H. Furstenberg, “A Poisson formula for semisimple Lie groups,” Ann. Math.,77, No. 2, 335–386 (1963).

  171. 171.

    R. Gangolli, “On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups,” Ann. Math.,93, No. 1, 150–165 (1971).

  172. 172.

    I. M. Gel'fand [Gelfand] and M. A. Naimark [Neumark], Unitäre Darstellungen der klassischen Gruppen, Akad. Verl., Berlin (1957), 333 pages.

  173. 173.

    R. Godement, “Des représentations unitaires irreductibles du groupe complexe unimodulaire,” in: Sémin. Bourbaki, 1e année: 1948–49 (2nd ed.), Secrét. Math., Paris (1959), pp. 4/1–4/7.

  174. 174.

    R. Godement, “Le transformation de Fourier dans le groupe complexe unimodulaire á deux variables,” in: Sémin. Bourbaki, 1e année: 1948–49 (2nd ed.), Secrét. Math., Paris (1959), pp. 13/1–13/7.

  175. 175.

    R. Godement, “A theory of spherical functions (I),” Trans. Amer. Math. Soc.,73, 496–556 (1952).

  176. 176.

    R. Godement, “Théorie des caractères. I. Algébres unitaires,” Ann. Math.,59, No. 1, 47–62 (1954).

  177. 177.

    R. Godement, “Théorie des caractères. II. Définition et propriétés générales des caractères,” Ann. Math.,59, No. 1, 63–85 (1954).

  178. 178.

    R. Goodman, “Analytic and entire vectors for representations of Lie groups,” Trans. Amer. Math. Soc.,143, 55–76 (1969).

  179. 179.

    R. Goodman, “Analytic domination by fractional powers of a positive operator,” Bull. Amer. Math. Soc.,74, No. 4, 702–704 (1968).

  180. 180.

    K. Gross, “The Plancherel transform on the nilpotent part of G2 and some applications to the representation theory of G2,” Trans. Amer. Math. Soc.,132, No. 2, 411–446 (1968).

  181. 181.

    K. Gross, “Restriction to a parabolic subgroup and irreducibility of degenerate principal series of Sp(2, C),” Bull. Amer. Math. Soc.,76, No. 6, 1281–1285 (1970).

  182. 182.

    K. Gross, “The dual of a parabolic subgroup and a degenerate principal series of Sp(n, C),” Amer. J. Math.,93, No. 2, 398–428 (1971).

  183. 183.

    Harish-Chandra, “On representation of Lie algebras,” Ann. Math.,50, No. 5, 900–915 (1949).

  184. 184.

    Harish-Chandra, “On some applications of the universal enveloping algebra of a semisimple Lie algebra,” Trans. Amer. Math. Soc.,70, No. 1, 28–96 (1951).

  185. 185.

    Harish-Chandra, “Representations of a semisimple Lie group on a Banach space (I),” Proc. Nat. Acad. Sci. USA,37, No. 1, 170–173 (1951).

  186. 186.

    Harish-Chandra, “Representations of a semisimple Lie group (II),” Proc. Nat. Acad. Sci. USA,32, No. 2, 362–365 (1951).

  187. 187.

    Harish-Chandra, “Representations of a semisimple Lie group (III),” Proc. Nat. Acad. Sci. USA,37, No. 2, 366–369 (1951).

  188. 188.

    Harish-Chandra, “The Plancherel formula for complex semisimple Lie groups,” Proc Nat. Acad. Sci. USA,37, No. 12, 813–818 (1951).

  189. 189.

    Harish-Chandra, “Representations of a semisimple Lie group on a Banach space (I),” Trans. Amer. Math. Soc.,75, No. 2, 185–243 (1953).

  190. 190.

    Harish-Chandra, “Representations of semisimple Lie groups (II),” Trans. Amer. Math. Soc.,76, No. 1, 26–65 (1954).

  191. 191.

    Harish-Chandra, “Representations of semisimple Lie groups (III),” Trans. Amer. Math. Soc.,76, No. 2, 234–253 (1954).

  192. 192.

    Harish-Chandra, “The Plancherel formula for complex semisimple Lie groups,” Trans. Amer. Math. Soc.,76, No. 3, 485–528 (1954).

  193. 193.

    Harish-Chandra, “On the characters of a semisimple Lie group,” Bull. Amer. Math. Soc.,61, No. 5, 389–396 (1955).

  194. 194.

    Harish-Chandra, “The characters of semisimple Lie groups,” Trans. Amer. Math. Soc.,83, No. 1, 98–163 (1956).

  195. 195.

    Harish-Chandra, “Spherical functions on a semisimple Lie group,” Proc. Nat. Acad. Sci. USA,43, No. 5, 408–409 (1957).

  196. 196.

    Harish-Chandra, “Invariant eigendistributions on semisimple Lie groups,” Bull. Amer. Math. Soc.,69, No. 1, 117–123 (1963).

  197. 197.

    Harish-Chandra, “Invariant eigendistributions on a semisimple Lie group,” Trans. Amer. Math. Soc.,119, No. 3, 457–508 (1965).

  198. 198.

    Harish-Chandra, “Some applications of the Schwartz space of a semisimple Lie group,” in: Lecture Notes in Mathematics, Vol. 140, Springer, Berlin (1970), pp. 1–7.

  199. 199.

    Harish-Chandra, “Harmonic analysis of semisimple Lie groups,” Bull. Amer. Math. Soc.,76, No. 3, 529–551 (1971).

  200. 200.

    S. Helgason, “Radon-Fourier transforms on symmetric spaces and related group representations,” Bull. Amer. Math. Soc.,71, No. 5, 757–763 (1965).

  201. 201.

    S. Helgason, “A duality for symmetric spaces with applications to group representations,” Adv. Math.,5, No. 1, 1–154 (1970).

  202. 202.

    R. Hermann, “Differential equations of the matrix elements of the degenerate series,” Bull. Amer. Math. Soc.,73, No. 6, 899–903 (1967).

  203. 203.

    T. Hirai, “Structure of induced representations and characters of irreducible representations of complex semisimple Lie groups,” in: Lecture Notes in Mathematics, Vol. 266, Springer, Berlin (1972), pp. 167–188.

  204. 204.

    A. W. Knapp and E. M. Stein, “Intertwining operators for semisimple groups,” Ann. Math.,93, No. 3, 489–578 (1971).

  205. 205.

    A. W. Knapp and R. E. Williamson, “Poisson integrals and semisimple groups,” J. Anal. Math.,24, No. 1, 53–76 (1971).

  206. 206.

    B. Kostant, “The principal three dimensional subgroup and the Betty numbers of a complex simple Lie group,” Amer. J. Math.,81, No. 4, 973–1032 (1959).

  207. 207.

    B. Kostant, “Lie algebra cohomology and generalized Borel-Weil theorem,” Ann. Math.,74, No. 2, 329–387 (1961).

  208. 208.

    B. Kostant, “Lie group representations on polynomial rings,” Amer. J. Math.,85, No. 3, 327–404 (1963).

  209. 209.

    R. A. Kunze and E. M. Stein, “Uniformly bounded representations. II. Analytic continuation of the principal series of representations of the n x n complex unimodular group,” Amer. J. Math.,83, No. 4, 723–786 (1961).

  210. 210.

    R. A. Kunze and E. M. Stein, “Uniformly bounded representations. III. Intertwining operators for the principal series on semisimple groups,” Amer. J. Math.,89, No. 2, 385–442 (1967).

  211. 211.

    B. Kursunoglu, “Complex orthogonal and antiorthogonal representations of Lorentz group,” J. Math. Phys.,2, No. 1, 22–32 (1961).

  212. 212.

    R. L. Lipsman, “Uniformly bounded representations of SL(2, C),” Bull. Amer. Math. Soc.,73, No. 5, 652–655 (1967).

  213. 213.

    R. L. Lipsman, “Uniformly bounded representations of SL(2, C),” Amer. J. Math.,91, No. 1, 47–66 (1969).

  214. 214.

    R. L. Lipsman, “Harmonic analysis on SL(n, C),” J. Funct. Anal.,3, No. 1, 126–155 (1969).

  215. 215.

    I. G. Macdonald, “Harmonic analysis on semisimple groups,” in: Actes Congr. Internat. Mathématiciens, 1970, Vol. 2, Paris (1971), pp. 331–335.

  216. 216.

    R. T. Moore, “Exponentiation of operator Lie algebras on Banach spaces,” Bull. Amer. Math. Soc.,71, No. 6, 903–908 (1965).

  217. 217.

    R. T. Moore, Measurables, Continuous, and Smooth Vectors for Semigroups and Group Representations (Mem. Amer. Math. Soc., No. 78), AMS, Providence, R. I. (1968), 80 pages.

  218. 218.

    M. A. Naimark, “Some problems and results in representation theory of complex semisimple Lie groups,” Actes Congr. Internat. Mathématiciens, 1970, Vol. 2, Paris (1971), pp. 407–411.

  219. 219.

    E. Nelson, “Analytic vectors,” Ann. Math.,70, No. 3, 572–615 (1959).

  220. 220.

    Nguyen Huu Anh, “Restriction of the principal series of SL(n, C) to some reductive subgroups,” Pacific J. Math.,38, No. 2, 295–314 (1971).

  221. 221.

    K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, “Representation of complex semisimple Lie groups and Lie algebras,” Bull. Amer. Math. Soc.,72, No. 3, 522–525 (1966).

  222. 222.

    K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, “Representations of complex semisimple Lie groups and Lie algebras,” Ann. Math.,85, No. 3, 383–429 (1967).

  223. 223.

    W. A. Rühl, “A convolution integral for Fourier transforms on the group SL(2, C),” Commun. Math. Phys.,10, No. 3, 199–216 (1968).

  224. 224.

    W. A. Rühl, “An elementary proof of the Plancherel theorem for the classical groups,” Commun. Math. Phys.,11, No. 4, 297–302 (1969).

  225. 225.

    G. Schiffmann, “Intégrales d'entrelacement,” Compt. Rend.,266, No. 2, A47-A49 (1968).

  226. 226.

    G. Schiffmann, “Intégrales d'entrelacement et fonctions de Whittaker,” Bull. Soc. Math. France,99, No. 4, 3–72 (1971).

  227. 227.

    I. Segal, “On extension of Plancherel formula to separable unimodular groups,” Ann. Math.,52, No. 2, 272–292 (1950).

  228. 228.

    L. Solomon and D.-N. Verma, “Sur le corps des quotients de l'algèbre enveloppante d'une algèbre de Lie,” Compt. Rend.,164, No. 23, A985-A986 (1967).

  229. 229.

    E. M. Stein, “Analysis in matrix spaces and some new representations of SL(n, C),” Ann. Math.,86, No. 3, 461–490 (1967).

  230. 230.

    E. M. Stein, “Analytic continuation of group representations,” Adv. Math.,4, No. 2, 172–207 (1970).

  231. 231.

    W. F. Stinespring, “A semisimple matrix group is of type I,” Proc. Amer. Math. Soc.,9, No. 6, 965–967 (1958).

  232. 232.

    W. F. Stinespring, “Integrability of Fourier transforms for unimodular Lie groups,” Duke Math. J.,26, No. 1, 123–131 (1959).

  233. 233.

    S. Ström, “On the matrix elements of a unitary representation of the homogeneous Lorentz group,” Ark. Fys.,29, No. 5, 467–483 (1965).

  234. 234.

    S. Ström, “Matrix elements of the supplementary series of unitary representations of SL(2, C),” Ark. Fys.,38, No. 4, 373–381 (1968).

  235. 235.

    M. Tsuchikawa, “On the representations of SL(3, C) (I),” Proc. Japan. Acad.,43, No. 9, 852–855 (1967).

  236. 236.

    M. Tsuchikawa, “On the representations of SL(3, C) (II),” Proc. Japan. Acad.,44, No. 3, 127–129 (1968).

  237. 237.

    M. Tsuchikawa, “On the representations of SL(3, C) (III),” Proc. Japan. Acad.,44, No. 3, 130–132 (1968).

  238. 238.

    M. Tsuchikawa, “Unitary representations of SL(n, C),” Proc. Japan. Acad.,44, No. 9, 859–563 (1968).

  239. 239.

    V. S. Varadarajan, “Representations of semisimple Lie algebras,” Math. Student,33, No. 1, 37–44 (1965).

  240. 240.

    D.-N. Verma, Structure of Certain Induced Representations of Complex Semisimple Lie Algebras (Doctoral Dissertation), Yale Univ., New Haven, Conn. (1966), 107 pages; Dissert. Abstr.,B27, No. 8, 2799 (1967).

  241. 241.

    D.-N. Verma, “Structure of certain induced representations of complex semisimple Lie algebras,” Bull. Amer. Math. Soc.,74, No. 1, 160–166 (1968).

  242. 242.

    J. Virsik, “The representation of inertial particles in the Lie algebra of the Lorentz group,” Mat.-Fyz. Čas.,16, No. 1, 82–90 (1966).

  243. 243.

    N. R. Wallach, “Induced representations of Lie algebras and the theorem of Borel-Weil,” Trans. Amer. Math. Soc.,136, No. 1, 181–187 (1969).

  244. 244.

    N. R. Wallach, “Cyclical vectors and irreducibility for principal series representations,” Trans. Amer. Math. Soc.,158, No. 1, 107–113 (1971).

  245. 245.

    N. R. Wallach, “Cyclic vectors and irreducibility for principal series representations (II),” Trans. Amer. Math. Soc.,164, No. 2, 389–396 (1972).

  246. 246.

    S. P. Wang, “The dual space of semisimple Lie groups,” Amer. J. Math.,91, No. 5, 921–937 (1968).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki (Mathematicheskii Analiz), Vol. 11, pp. 51–90, 1973.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhelobenko, D.P. Representations of complex semisimple lie groups. J Math Sci 4, 656–680 (1975). https://doi.org/10.1007/BF01083883

Download citation

Keywords

  • Complex Semisimple