Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Innovative processes and the factorization problem

  • 31 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    E. G. Gladyshev, “Multidimensional stationary random processes,” Teor. Veroyst. i ee Primen.,3, No. 4, 458–462 (1958).

  2. 2.

    K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, New Jersey (1962).

  3. 3.

    I. Ts. Gokhberg and M. G. Krein, Theory of Volterra Operators in Hilbert Space and Applications [in Russian], Nauka, Moscow (1967).

  4. 4.

    N. Dunford and J. T. Schwartz, Linear Operators, Part I. General Theory, Wiley (1958).

  5. 5.

    N. Dunford and J. T. Schwartz, Linear Operators. Part II. Spectral Theory. Self-Adjoint Operators in Hilbert Space, Wiley (1958).

  6. 6.

    V. N. Zasukhin, “Theory of multidimensional stationary processes,” Dokl. Akad. Nauk,33, 435–437 (1941).

  7. 7.

    I. A. Ibragimov and Yu. A. Rozanov, Gaussian Random Processes [in Russian], Nauka, Moscow (1970).

  8. 8.

    Z. Ivkovich and Yu. A. Rozanov, “Hida-Cramer canonical decomposition for random processes,” Teor. Veroyat. i ee Primen.,16, No. 2, 348–353 (1971).

  9. 9.

    A. N. Kolmogorov, “Stationary sequences in Hilbert space,” Byull. MGU,2, No. 6, 1–40 (1941).

  10. 10.

    M. G. Krein, “An extrapolation problem of A. N. Kolmogorov,” Dokl. Akad. Nauk SSSR,46, 306–309 (1944).

  11. 11.

    M. G. Krein, “Fundamental approximation problem of the theory of extrapolation and filtration of stationary random processes,” Dokl. Akad. Nauk SSSR,94, No. 1, 13–16 (1954).

  12. 12.

    V. I. Krylov, “Functions regular in the half-plane,” Matem. Sb.,4, No. 46, 9–30 (1938).

  13. 13.

    R. F. Matveev, “Regularity of multidimensional stationary processes,” Dokl. Akad. Nauk SSSR,126, No. 5 (1959).

  14. 14.

    A. I. Plesner and V. A. Rokhlin, “Spectral theory of linear operators. II,” Usp. Matem. Nauk,1, No. 1, 71–191 (1946).

  15. 15.

    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Moscow-Leningrad (1950).

  16. 16.

    F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York.

  17. 17.

    Yu. A. Rozanov, “Linear interpolation of stationary processes with discontinuous time,” Dokl. Akad. Nauk SSSR,116, No. 6, 923–926 (1957).

  18. 18.

    Yu. A. Rozanov, “Spectral theory of multidimensional stationary random processes with discontinuous time,” Usp. Matem. Nauk,13, No. 2, 93–142 (1958).

  19. 19.

    Yu. A. Rozanov, Stationary Random Processes [in Russian], Fizmatgiz, Moscow (1963).

  20. 20.

    Yu. A. Rozanov, “Gaussian infinite-dimensional distributions,” Tr. Matem. Institute Akad. Nauk SSSR,108 (1968).

  21. 21.

    B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, New York (1971).

  22. 22.

    H. Cramer, “Stochastic processes as curves in Hilbert space,” Teor. Veroyat. i ee Primen.,9, No. 2, 193–204 (1964).

  23. 23.

    A. Devinatz, “The factorization of operator valued functions,” Ann. Math.,73, No. 3, 458–495 (1961).

  24. 24.

    R. G. Douglas, “On factoring positive operator functions,” J. Math. and Mech.,16, No. 2, 119–126 (1966).

  25. 25.

    J. Feldman, “Equivalence and perpendicularity of Gaussian processes,” Pacif. J. Math.,8, No. 4, 699–708 (1958).

  26. 26.

    J. Feldman, “Some classes of equivalent Gaussian processes on an integral,” Pacif. J. Math.,10, No. 4, 1211–1220 (1960).

  27. 27.

    P. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, New York (1951).

  28. 28.

    O. Hanner, “Deterministic and nondeterministic stationary random processes,” Ark. Mat.,1, No. 44, 161–177 (1950).

  29. 29.

    H. Helson and D. Lowdenslager, “Prediction theory and Fourier series in several variables. I,” Acta Math.,99, No. 3–4, 165–202 (1958).

  30. 30.

    H. Helson and D. Lowdenslager, “Prediction theory and Fourier series in several variables. II,” Acta Math.,106, Nos. 3–4, 175–213 (1961).

  31. 31.

    H. Helson, “Vector valued processes,” Proc. 4th Berkeley Sympos. Math. Statistics and Probability, 1960, Vol. 2, Univ. California Press, Berkeley-Los Angeles (1961), pp. 203–212.

  32. 32.

    T. Hida, “Canonical representations of Gaussian processes and their applications,” Mem. Coll. Sci. Univ. Kyoto, Ser. A,33, No. 1, 109–155 (1960).

  33. 33.

    G. Kallianpur and V. Mandrekar, “Multiplicity and representation theory of purely nondeterministic stochastic processes,” Teor. Veroyat. i ee Primen.,10, No. 4, 614–644 (1965).

  34. 34.

    P. D. Lax, “On the regularity of spectral densities,” Teor. Veroyat. i ee Primen.,8, No. 3, 337–340 (1963).

  35. 35.

    N. Levinson and H. McKean, “Weighted trigonometric approximations on R1 with application to the germ field of a stationary Gaussian noise,” Acta Math.,112, Nos. 1–2, 99–143 (1964).

  36. 36.

    Yu. A. Rozanov, “Some approximation problems in the theory of stationary processes,” J. Multivar. Anal.,2, No. 2, 135–144 (1972).

  37. 37.

    Yu. A. Rozanov, “Innovation processes and nonanticipative processes,” J. Multivar. Anal.,3, (1973).

  38. 38.

    L. A. Shepp, “Radon-Nicodym derivatives of Gaussian measures,” Ann. Math. Statist.,37, No. 2, 321–354 (1966).

  39. 39.

    M. H. Stone, Linear Transformations in Hilbert Space, New York (1932).

  40. 40.

    N. Wiener and P. Masani, “The prediction theory of multivariate stochastic processes. II. The linear predictor,” Acta Math,99, Nos. 1–2, 93–137 (May 1958).

Download references

Additional information

Translated from Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki, Vol.3, pp. 181–258,1974.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rozanov, Y.A. Innovative processes and the factorization problem. J Math Sci 5, 397–450 (1976). https://doi.org/10.1007/BF01083781

Download citation

Keywords

  • Factorization Problem
  • Innovative Process