Functional Analysis and Its Applications

, Volume 18, Issue 4, pp 327–328 | Cite as

Rotation numbers that have nothing to do with the kam theory

  • S. E. Burkov
  • Ya. G. Sinai
Brief Communications


Functional Analysis Rotation Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. 1.
    S. Aubry and P. Y. Le Daeron, Physica,D8, 381–397 (1983).Google Scholar
  2. 2.
    J. Mather, Topology,21, 457–471 (1982).Google Scholar
  3. 3.
    I. Percival, J. Phys.,A12, 57–60 (1979).Google Scholar
  4. 4.
    J. McKay, J. D. Meiss, and I. Percival, Physica D11, Nos. 3–4, 463–485 (1984).Google Scholar
  5. 5.
    B. V. Chirikov, Phys. Rep.,52, 263–291 (1979).Google Scholar
  6. 6.
    J. Moser, Lectures on Hamiltonian Systems, Mem. Am. Math. Soc., No. 81 (1968), pp. 1–60; C. L. Siegel and J. Moser, Lectures on Celestial Mechanics, Secs. 32–36, Springer-Verlag, Berlin—Heidelberg—New York (1971).Google Scholar
  7. 7.
    A. Ya. Khinchin, Continuous Fractions [in Russian], Nauka, Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • S. E. Burkov
  • Ya. G. Sinai

There are no affiliations available

Personalised recommendations