Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Connection theory in bundle spaces

  • 59 Accesses

  • 7 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, New York and London (1964).

  2. 2.

    V. I. Bliznikas, “Affine connection in the space of support elements,” Reports Third Siberian Conf. Math. Mech. [in Russian], Tomsk Univ., Tomsk (1964), pp. 181–183.

  3. 3.

    V. I. Bliznikas, “On certain manifolds of support elements,” Liet. Mat. Rinkinys, 3(2):221–222 (1963).

  4. 4.

    V. I. Bliznikas, “The complete object of a centroprojective connection and the torsion-curvature object of a space of central copunctors,” Liet. Mat. Rinkinys, 4(4):457–475 (1964).

  5. 5.

    V. I. Bliznikas, “On the theory of the curvature of the space of support elements,” Liet. Met. Rinkinys, 5(1):9–24 (1965).

  6. 6.

    V. I. Bliznikas, “Symmetric spaces of central copunctors,” Liet. Mat. Rinkinys, 5(3):381–389 (1965).

  7. 7.

    V. I. Bliznikas, “Linear differential-geometric connections of higher-order in the space of support elements,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 5, 13–24 (1966).

  8. 8.

    V. I. Bliznikas, “Nonholonomic Lie differentiation and linear connections in the space of support elements,” Liet. Mat. Rinkinys, 6(2):141–208 (1966).

  9. 9.

    V. I. Bliznikas, “On certain connections of bundle spaces,” Liet. Mat. Rinkinys, 7(1):5–16 (1967).

  10. 10.

    V. V. Vagner, “Absolute derivative of the field of a local geometric object in a composite manifold,” Dokl. Akad. Nauk SSSR, 40(3):94–97 (1943).

  11. 11.

    V. V. Vagner, “Theory of a composite manifold,” Proc. Seminar Vector and Tensor Analysis, Vol. 8 [in Russian], Moscow State Univ., Moscow (1950), pp. 11–72.

  12. 12.

    V. V. Vagner, “Algebraic aspects of the general theory of partial connections in bundle spaces,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 11, 26–40 (1968).

  13. 13.

    V. I. Vedernikov, “Generalization of A. P. Norden's normalization method to the case of a bundle space,” Uch. Zap. Kazansk. Univ., 123(1):3–23 (1963).

  14. 14.

    V. I. Vedernikov, “Symmetric homogeneous spaces and their role in the theory of Cartan connections,” Reports Third Siberian Conf. Math. Mech. [in Russian], Tomsk Univ., Tomsk (1964), pp. 185–186.

  15. 15.

    V. I. Vedernikov, “Completely reducible connections,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 1, 33–44 (1965).

  16. 16.

    V. I. Vedernikov, “Symmetric spaces and conjugate connections,” Uch. Zap. Kazansk. Univ., 125(1):7–59 (1965).

  17. 17.

    V. I. Vedernikov, “Symmetric spaces. Conjugate connections as a normalized connection,” Tr. Geometr. Seminara, Inst. Nauchn. Inform. Akad. Nauk SSSR, 1:63–88 (1966).

  18. 18.

    V. A. Gaukhman, “F-structures on principal bundle spaces,” Tr. Tomskogo Univ., 176:20–27 (1964).

  19. 19.

    L. E. Evtushik, “Nonlinear connections,” Uspekhi Mat. Nauk, 17(2):195–197 (1962).

  20. 20.

    L. E. Evtushik, “Higher-order nonlinear connections,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 2, 32–44 (1969).

  21. 21.

    I. L. Kantor, “A generalization of reductive homogeneous spaces,” Dokl. Akad. Nauk SSSR, 151(6):1268–1270 (1963).

  22. 22.

    I. L. Kantor, “Transitive-differential groups and invariant connections on homogeneous spaces,” Proc. Seminar Vector and Tensor Analysis with Their Appl. to Geom., Mech., and Phys., Issue 13 [in Russian], Moscow Univ., Moscow (1966), pp. 310–398.

  23. 23.

    É. Cartan, Spaces of Affine, Projective, and Conformal Connection [Russian translation], Izd. Kazansk. Univ., Kazan (1962), 210 pp.

  24. 24.

    B. L. Laptev, “Covariant differential and the theory of differential invariants in the space of tensor support elements,” Uch. Zap. Kazansk. Univ., 118(4):75–147 (1958).

  25. 25.

    G. F. Laptev, “Differential connections of manifolds and their holonomy groups,” Dokl. Akad. Nauk SSSR, 71(4):597–600 (1950).

  26. 26.

    G. F. Laptev, “Manifolds of geometric elements with a differential connection,” Dokl. Akad. Nauk SSSR, 73(1):17–20 (1950).

  27. 27.

    G. F. Laptev, “Differential geometry of immersed manifolds. Group-theoretical method of differential geometric investigations,” Tr. Mosk. Mat. Obshch., No. 2, 275–382 (1953).

  28. 28.

    G. F. Laptev, “Group-theoretic method of differential-geometric investigations,” Proc. Third All-Union Math. Congr., 1956, Vol. 3 [in Russian], Akad. Nauk SSSR, Moscow (1958), pp. 409–418.

  29. 29.

    G. F. Laptev, “Manifolds immersed in generalized spaces,” Proc. Fourth All-Union Math. Congr., 1961, Vol. 2 [in Russian], Nauka, Leningrad (1964), pp. 226–233.

  30. 30.

    G. F. Laptev, “Fundamental infinitesimal structures of higher orders on a smooth manifold,” Tr. Geometr. Seminara, Inst. Nauchn. Inform. Akad. Nauk SSSR, 1:139–189 (1966).

  31. 31.

    V. G. Lemlein, “Induction of a connection of constant curvature in associated centroprojective spaces of a locally projective manifold,” Dokl. Akad. Nauk SSSR, 131(1):17–20 (1960).

  32. 32.

    V. G. Lemlein, “Projective and projective-metric translations in manifolds with affine connection and in Riemann spaces,” Dokl. Akad. Nauk SSSR, 132(6);1261–1264 (1960).

  33. 33.

    V. G. Lemlein, “Geometric meaning of the projective curvature tensor in manifolds with affine connection,” Dokl. Akad. Nauk SSSR, 133(6):1287–1290 (1960).

  34. 34.

    V. G. Lemlein, “Spaces with centro-projective connection (Γi jh, Γlm) as manifolds immersed in the representation space of a prolonged pseudogroup of analytic transformations,” Dokl. Akad. Nauk SSSR, 138(6):1291–1294 (1961).

  35. 35.

    V. G. Lemlein, “Local centro-projective spaces and connections in a differentiable manifold,” Liet. Mat. Rinkinys, 4(1):41–132 (1964).

  36. 36.

    S. Land, Introduction to Differentiable Manifolds, Interscience Publishers, New York (1962).

  37. 37.

    A. Lichnerowicz, Théorie Globale des Connexions et des Groupes d'Holonomie, Edizioni Cremonese, Rome (1957).

  38. 38.

    M. V. Losik “Infinitesimal connections in tangent bundle spaces,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 5, 54–60 (1964).

  39. 39.

    Ü. G. Lumiste, “Infinitesimal connection in a bundle space of affine frames,” Liet. Mat. Rinkinys, 3(2):211 (1963).

  40. 40.

    Ü. G. Lumiste, “On the foundations of global connection theory,” Tartu Riikl. Ülikooli Toimetised, No. 150, 69–108 (1964).

  41. 41.

    Ü. G. Lumiste, “Connection in a bundle space with homogeneous reductive fibers,” Proc. First Republ. Conf. Belorussian Mathematicians, 1964 [in Russian], Minsk (1965), pp. 247–258.

  42. 42.

    Ü. G. Lumiste, “Connections in homogeneous bundles,” Uspekhi Mat. Nauk, 20(5):263–265 (1965).

  43. 43.

    Ü. G. Lumiste, “Invariant riggings of a congruence of planes of an affine space,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 6, 93–102 (1965).

  44. 44.

    Ü. G. Lumiste, “Induced connections in immersed projective and affine bundles,” Tartu Riikl. Ülikooli Toimetised, No. 177, 6–42 (1965(1966)).

  45. 45.

    Ü. G. Lumiste, “Homogeneous bundles with connection and their immersions,” Tr. Geometr. Seminara, Inst. Nauchn. Inform. Akad. Nauk SSSR, 1:191–237 (1966).

  46. 46.

    Ü. G. Lumiste, “Connections in homogeneous bundles,” Mat. Sb., 69(3):434–469 (1966).

  47. 47.

    Ü. G. Lumiste, “On the theory of plane manifolds of a Euclidean space,” Tartu Riikl. Ülikooli Toimetised, No. 192, 12–46 (1966).

  48. 48.

    Ü. G. Lumiste, “Induced connections in the differential geometry of a family of planes,” Abstracts Reports Third Interinstitutional Conf. Problems Geometry, September 14–19, 1967 [in Russian], Kazan Univ., Kazan (1967), pp. 101–103.

  49. 49.

    Ü. G. Lumiste, “Stratifiable families of 1-pairs of a four-dimensional projective space,” Tartu Riikl. Ülikooli Toimetised, No. 206, 10–21 (1967).

  50. 50.

    V. S. Malakhovskii, “Manifolds of geometric elements of genus zero with a fundamental-group connections,” Reports Third Siberian Conf. Math. Mech., 1964 [in Russian], Tomsk Univ., Tomsk (1964), p. 199.

  51. 51.

    K. Nomizu, Lie Groups and Differential Geometry, The Math. Soc. Japan, Tokyo (1956).

  52. 52.

    A. L. Onishchik, “Connections without curvature and the De Rham theorem,” Dokl. Akad. Nauk SSSR, 159(5):988–991 (1964).

  53. 53.

    N. M. Ostianu, “The geometry of a surface of an affine symplectic space,” Uch. Zap. Mosk. Gos. Ped. Inst. im. V. I. Lenina, No. 208, 156–176 (1963).

  54. 54.

    A. I. Sirota, “The torsion of spaces with infinitesimal connection,” Tbilisis Matematikis Institutis Shromeb. Sakartvelos SSR Metsnierebata Akademia, 27:3–9 (1960).

  55. 55.

    V. V. Slukhaev, “Nonholonomic manifolds V n m of zero exterior curvature,” Ukrain. Geometr. Sb., No. 4, 78–84 (1967).

  56. 56.

    C. Teleman, Elemente de Topologie si Varietati Diferentiabile, Editura Didactica si Pedagogica, Bucharest (1964); Russian translation (revised and augmented by the author): Izd. Mir, Moscow (1967).

  57. 57.

    A. S. Udalov, “On the theory of curves and surfaces in affine and projective spaces,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 4, 158–164 (1963).

  58. 58.

    A. S. Udalov, “Invariant rigging of surfaces in a projective multidimensional space,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 2, 102–105 (1968).

  59. 59.

    A. P. Urbonas, “Connections in the space of support elements,” Liet. Mat. Rinkinys, 6(2):279–290 (1966).

  60. 60.

    S. S. Chern, Complex Manifolds, Textos de Matemática, No. 5, Instituto de Física e Matemática, Universidade do Recife (1959).

  61. 61.

    Ya. M. Chikvashvili, “Generalization of the Ricci identities for a function of a field of arbitrary type,” Sakartveloc Politekhnikuri Instituti, Shromebi, No. 4(102), 3–9 (1965).

  62. 62.

    P. I. Shveikin, “Normal geometric objects of a surface in affine space,” Tr. Geometr. Seminara, Inst. Nauchn. Inform. Akad. Nauk SSSR, 1:331–423 (1966).

  63. 63.

    A. Szybiak, “Lowering of a class of a geometric object,” Zesz. Nauk. Uniw. Jagiell., No. 167, 61–65 (1968).

  64. 64.

    Yu. Shinkunas, “The space of support linears,” Liet Mat. Rinkinys, 6(3):449–455 (1966).

  65. 65.

    Yu. Shinkunas, “Connections in spaces of special support elements,” Liet. Mat. Rinkinys, 6(4):622 (1966).

  66. 66.

    M. Ako, “Non-linear connection in vector bundles,” Kodai Math. Semin. Repts. 18(4):307–316 (1966).

  67. 67.

    A. Asada, “Connection of topological vector bundles,” Proc. Japan Acad., 41(10):919–922 (1965).

  68. 68.

    A. Asada, “Connection of topological fibre bundles,” Proc. Japan Acad., 42(1):13–18 (1966).

  69. 69.

    A. Asada, “Connection of topological fibre bundles. II,” Proc. Japan Acad., 42(3):231–236 (1966).

  70. 70.

    A. Asada, “Connection of flat vector bundles,” J. Fac. Sci. Shinshu Univ., 2(2):109–116 (1967).

  71. 71.

    E. Astara, “Sulle connessioni tensoriali decomponibili,” Rend. Semin. Fac. Sci. Univ. Cagliari, 34(1–2):123–134 (1964).

  72. 72.

    M. F. Atiyah, “Complex analytic connection in fibre bundles,” Trans. Amer. Math. Soc., 85(1):181–207 (1957).

  73. 73.

    W. Barthel, “Nichtlineare Zusammenhänge und deren Holonomiegruppen,” J. Reine und Angew. Math., 212(3–4):120–149 (1963).

  74. 74.

    J. P. Benzceri, “Sur la classe d'Euler (ou Stiefel-Whitney) de fibrés affins plats,” C. R. Acad. Sci. 260(21):5442–5444 (1965).

  75. 75.

    D. Bernard, “Sur la géométrie différentielle des G-structures,” Ann. Inst. Fourier, Vol. 10, 151–270 (1960).

  76. 76.

    E. Bortolotti, “Connessioni nelle varietà luogo di spazi; applicazione alla geometria metrica differenziale delle congruenze di rette,” Rend. Semin. Fac. Sci. Univ. Cagliari, No. 3, 81–89 (1963).

  77. 77.

    E. Bortolotti, “Spazi a connessione proiettiva,” Roma, Cremonese (1941).

  78. 78.

    A. J. Brown, “Connexions on spinor fiber bundles,” Doct. Diss. Univ. Mich., 1966, 138 pp; Dissert. Abstrs., B27(7):2436 (1967).

  79. 79.

    A. J. Brown, “Geometry of spinors,” J. Math. Anal. and Applic., 25(3):537–555 (1969).

  80. 80.

    É. Cartan, “Les groupes d'holonomie des espaces généralisés,” Acta math., No. 48, 1–42 (1926).

  81. 81.

    É. Cartan, “Oeuvre Complètes. II,” Paris (1952),pp. 571–714, 719–856, 1311–1334, 1335–1384.

  82. 82.

    H. Cartan, “La transgression dans un groupe de Lie et dans un espace fibré principal,” Colloque de Topologie, Bruxelles (1950),pp. 57–71.

  83. 83.

    I. Cattaneo Gasparini, “Sulle connessioni infinitesimali nello spazio fibrato dei riferimenti affini di una Vn,” Rend. Mat. e Applic., 17(3–4):327–404 (1958).

  84. 84.

    I. Cattaneo Gasparini, “Sulle connessioni proiettive,” Ann. Mat. Pura ed Appl., Vol. 50, 467–473 (1960).

  85. 85.

    B. Cenkl, “Les variétés de König généralisées,” Czechoslovak. Math. J., 14(1):1–21 (1964).

  86. 86.

    B. Cenkl, “L'equation de structure d'un espace a connexion protective,” Czechoslovak. Mat. J., 14(1):79–94 (1964).

  87. 87.

    B. Cenkl, “Les connexions non-linéaires sur la variete A m n ,” Časop. Pěstov. Mat., 90(1):12–25 (1965).

  88. 88.

    B. Cenkl, “On the G-structure of higher order,” Časop. Pěstov. Mat., 90(1):26–32 (1965).

  89. 89.

    B. Cenkl, “Infinitesimal connections of higher order,” Rev. Roumaine Mat. Pures et Appl., 10(9):1277–1280 (1965).

  90. 90.

    S. S. Chern, Topics in Differential Geometry, Inst. Advanced Study, Princton, New Jersey (1951).

  91. 91.

    Y. H. Clifton, “On the completeness of Cartan connections,” J. Math. and Mech., 16(6):569–576 (1966).

  92. 92.

    A. Cossu, “Movimenti speciali in una varietà a connessione tensoriale dotata di transporto Assoluto,” Atti Accad. Naz. Lincei, Rend. Cl. Sci.Fis. Mat, e Natur., 28(2):156–164 (1960).

  93. 93.

    A. Cossu, “Varietà a connessione tensoriale per tensori doppi controvarianti che ammettono un gruppo d'ordine massimo di movimenti,” Rend. Mat. e Applie., 19(1–2):205–217 (1960).

  94. 94.

    A. Cossu, “Nozioni generali sulle connessioni tensoriali di specie qualunque,” Rend. Mat. e Applic., 21(1–2):167–218 (1961).

  95. 95.

    A. Cossu, “Equazioni di struttura di una connessione tensoriale di specie (r, 0),” Rend. Mat. e Applic, 24(3–4):225–241 (1965).

  96. 96.

    R. Crittenden, “Covariant differentiation,” Quart. J. Math., 13(52):285–298 (1962).

  97. 97.

    V. Cruceanu, “Sur les espaces à connexion centro-affine,” C. R. Acad. Sci., 250(24):6272–6274 (1965).

  98. 98.

    V. Cruceanu, “Sur la théorie des variétés plongées dans un espace a connexion métrique projective,” Ann. Stiint. Univ. Iasi, Sec. 1a, 12(1):159–173 (1966).

  99. 99.

    V. Cruceanu, “Sur certains espaces a connexion centroaffine,” An. Stiint. Univ. Iasi, Sec. 1a, 13(1):69–78 (1967).

  100. 100.

    V. Cruceanu, “Sur la definition d'une connexion affine,” C. R. Acad. Sci., 266(10):A532-A534 (1968).

  101. 101.

    C. Di Comite, “Connessioni di ordine n,” Rend. Mat. e Applic., 26(1–2):163–186 (1967).

  102. 102.

    C. Di Comite, “Sulle connessioni del secondo ordine,” Ann. Mat. Pura ed Appli., Vol. 76, 51–73 (1967).

  103. 103.

    C. Di Comite, “Pseudoconnessioni tensoriali di specie (r, s) di ordine n,” Ann. Mat. Pura ed Appli., Vol. 79, 107–139 (1968).

  104. 104.

    C. Ehresmann, “Les connections infinitésimales dans un espace fibré différentiable,” Colloque de Topologie, Bruxelles (1950), pp. 29–55.

  105. 105.

    C. Ehresmann, “Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal. II. L'espace des jets d'ordre r de Vn dans Vm. III. Transitivité des prolongements. IV. Éléments de contact et éléments d'enveloppe. V. Covariants différentiels et prolongements d'une structure infinitésimale,” C. R. Acad. Sci., 233:598–600, 777–779, 1081–1083 (1951); 234: 1028–1030, 1424–1426 (1952).

  106. 106.

    C. Ehresmann, “Extension du calcul des jets aux jets non holonomes,” C. R. Acad. Sci., 239(25):1762–1764 (1954).

  107. 107.

    C. Ehresmann, “Applications de la notion de jet non holonome,” C. R. Acad. Sci., 240(4):397–399 (1955).

  108. 108.

    C. Ehresmann, “Les prolongements d'un espace fibré différentiable,” C. R. Acad. Sci., 240(18):1755–1757 (1955).

  109. 109.

    C. Ehresmann, “Sur les connections d'ordre supérieur,” Atti del V° Congr. dell' Unione Mat. Ital., 1955, Roma, Cremonese (1956),326 pp.

  110. 110.

    C. Ehresmann, “Les connexions infinitésimales dans un espace fibré différentiable,” Semin. Bourbaki. Secrét. Math. 1950–51, 2-e année. 2-e éd. Paris, 1959, 24/1–24/16.

  111. 111.

    H. I. Eliasson, “Geometry of manifolds of maps,” J. Different. Geom., 1(2):169–194 (1967).

  112. 112.

    F. Fava, “Connessioni tensoriali in spazi proiettivi curvi,” Atti. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur, 97:1064–1084 (1962/1963).

  113. 113.

    F. Fava, “Connessioni tensoriali composte,” Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur., 98:773–789 (1963/1964).

  114. 114.

    F. Fava, “Varieta con connessioni tensoriali dotate di autoparallele e loro movimenti,” Rend. Semin. Mat. Univ. e Politechn. Torino, 23:57–73 (1963–1964).

  115. 115.

    E. A. Feldman, “The geometry of immersions. I,” Trans. Amer. Math. Soc., 120(2):185–224 (1965).

  116. 116.

    O. Galvani, “Sur la realisation des espaces ponctuels à torsion en géométrie euclidienne,” Ann. Sci. École Norm. Sup.,Vol. 62 (1945), pp. 1–92.

  117. 117.

    A. Goetz, “A general scheme of inducing infinitesimal connections in principal bundles,” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. et Phys., 10(1):29–34 (1962).

  118. 118.

    A. Goetz, “Special connections associated with a given linear connection,” Bull. Acad. Polon. Sci. Sér. Sci. Math., Astron. et Phys., 10(5):277–283 (1962).

  119. 119.

    A. Goetz, “On induced connections,” Fundam. Math., 55(2):149–174 (1964).

  120. 120.

    S. Golab, “Sur les comitants algebriques d'un objet de la connexion linéare tensorielle,” Ann. Mat. Pura ed. Appl., Vol. 54, 13–21 (1961).

  121. 121.

    S. Golab and A. Jakubowicz, “Ein Beitrag zur Theorie des Zusammenhanges für Bivektoren,” Tensor, 20(1):29–34 (1969).

  122. 122.

    W. Grueb, “Zur Theorie der linearen Übertragungen,” Suomalais. Tiedeakat. Toimituks. (1964), Sar. AI, No. 346, 22 pp.

  123. 123.

    P. A. Griffiths, “On a theorem of Chern,” Illinois J. Math., 6(3):468–479 (1962).

  124. 124.

    R. C. Gunning, “Connections for a class of pseudogroup structures,” Proc. Conf. Complex Analysis, Minneapolis, 1964, Berlin-Heidelberg-New York (1965), pp. 186–194.

  125. 125.

    T. Hangan, “Sur les connexions projectives,” Rev. Mat. Pures et Appl., 3(2):265–276 (1958).

  126. 126.

    T. Hangan, “Lie derivative and holonomy in the theory of infinitesimal connections,” Rev. Math. Pures et Appl., 5(1):89–102 (1960).

  127. 127.

    T. Hangan, “Derivata Lie si olonomie in teoria conexinnilor infinitezimale,” Studii si cercetări mat., Acad. RPR, 11(1):159–173 (1960).

  128. 128.

    T. Hangan, “Transformări projective infinitezimale si olonomie,” Lucrările consf. geometrie si topol., 1958, Acad. RPR (1962),pp. 165–168.

  129. 129.

    V. Hlavaty, “Affine embedding theory,” Nederl. Akad. Wetensch., Proc. Amsterdam, 52:505–517, 714–724, 977–986 (1949).

  130. 130.

    Chen-Jung Hsu, “A remark on locally flat infinitesimal connections,” Tohoku Math. J., 11(3):425–429 (1959).

  131. 131.

    S. Ide, “On the Wirtinger's connections in higher order spaces,” J. Fac. Sci. Hokkaido Univ., Ser 1, Vol. 13, 75–119 (1956).

  132. 132.

    S. Ide, “On the geometrical meanings of Wirtinger's connections based on Kawaguch's,” Tensor, Vol. 14, 216–218 (1963).

  133. 133.

    M. Jeger, “Ueber Inflexionen in projektiven Zusammenhaengen,” Univ. e. Politechn. Torino. Rend. Sem. Mat., Vol. 15, 201–224 (1955–1956).

  134. 134.

    F. Kamber and P. Tondeur, “The characteristic homomorphism of flat bundles,” Topology, 6(2):153–159 (1967).

  135. 135.

    F. Kamber and P. Tondeur, “Flat bundles and characteristic classes of group-representations,” Amer. J. Math., 89(4):857–886 (1967).

  136. 136.

    J. Kanitani, “Sur la structure projective d'espace fibré,” Ann. Mat. Pura ed. Appl., Vol. 57, 151–172 (1962).

  137. 137.

    J. Kanitani, “Sur les arêtes principales relatives à un espace fibré,” J. Math. Kyoto Univ., 4(2):327–353 (1965).

  138. 138.

    A. Kawaguchi, “On the vectors of higher order and the extended affine connections,” Ann. Mat. Pura ed Appl., Vol. 55, 105–117 (1961).

  139. 139.

    A. Kawaguchi, “Connections and Their Invariants in Higher Order Spaces,” Perspectives in Geometry and Relativity, Indiana Univ. Press (1966), pp. 192–200.

  140. 140.

    M. Kavaguchi, “Une observation sur le calcul des calottes,” Tensor, Vol. 14, 182–190 (1963).

  141. 141.

    S. Kobayashi, “On connections of Cartan,” Canad. J. Math., 8(2):145–156 (1956).

  142. 142.

    S. Kobayashi, “Theory of connections,” Ann. Mat. Pura ed Appl., Vol. 43, 119–194 (1957).

  143. 143.

    S. Kobayashi, “On characteristic classes defined by connections,” Tohoku Math. J., 13(3):381–385 (1961).

  144. 144.

    S. Kobayashi and K. Nomizu, “Foundations of differential geometry. Vol. I,” New York-London, Interscience, (1963), 340 pp.

  145. 145.

    S. Kobayashi and T. Nagano, “On projective connections,” J. Math. and Mech., 13(2):215–235 (1964).

  146. 146.

    I. Kolář, “O konexích vyšš⪘h řádu na hlavním fibrovaném prostoru,” Sb. Vojen. Akad. A. Zápoteckého, B17(1):39–47 (1969).

  147. 147.

    R. König, “Beiträge zu einer allgemeinen Mannigfaltigkeitslehre,” Jahresb. d. Deutsch. Math. Ver., Vol. 28, 213–228 (1920).

  148. 148.

    J. L. Koszul, “Cohomologie des espaces fibrés différentiables et connexions,” Semin. Bourbaki. Secrét. Math., 1950–1951, 3-e année. 2-e éd. Paris (1959), 38/1–38/7.

  149. 149.

    J. L. Koszul, “Lectures on fibre bundles and differential geometry,” The Tata Institute of Fundamental Research, Bombay (1960).

  150. 150.

    M. Kucharzewski, “Über die Tensorübertragung,” Ann. Mat. Pura ed Appl., Vol. 54, 65–83 (1961).

  151. 151.

    G. Legrand, “Une interpretation de la forme de courbure d'une connexion infinitésimale,” C. R. Acad. Sci., 250(21):3441–3442 (1960).

  152. 152.

    D. Lehmann, “Plongements de connexions,” C. R. Acad. Sci., 255(14):1566–1568 (1962).

  153. 153.

    D. Lehmann, “Extensions à courbure nulle d'une connexion,” C. R. Acad. Sci., 258(20):4903–4906 (1964).

  154. 154.

    D. Lehmann, “Remarques sur la connexion canonique d'une variété de Stifel,” C. R. Acad. Sci., 259(17):2754–2757 (1964).

  155. 155.

    D. Lehmann, “Une généralisation de la géométrie du plongement,” Cahiers Semin. Topol. et Géom. Différent, Ch. Ehresmann. Fac. Sci, Paris(1964), 6 pp.

  156. 156.

    D. Lehmann, “Remarque sur les fibrés C de base compacte, admettant une connexion à groupe d'holonomie fini,” C. R. Acad. Sci., 263(10):A348-A351 (1966).

  157. 157.

    D. Lehmann, “Connexions à courbure nulle sur les fibrés vectoriels de base Pn(R),” C. R. Acad. Sci., 264(10):A443-A445 (1967).

  158. 158.

    D. Lehmann, “Classification des connexions à courbure nulle,” C. R. Acad. Sci., 266(3):A142-A145 (1968).

  159. 159.

    D. Lehman, “Quelques propriétés des connexions induites, et fibrés à groupe structural variable en géométrie d'ordre supérieur,” Bull. Soc. Mat. France, Vol.96, Mém. No. 16 (1968), 128 pp.

  160. 160.

    T. Levi-Civta, “Nozione di parallelismo in una varietà qualunque e consequente specificazione geometrica della curvatura Riemanniana,” Rend. Circ. Matem. Palermo, Vol. 42 (1917), pp. 173–205.

  161. 161.

    P. Libermann, “On sprays and higher order connections,” Proc. Nat. Acad. Sci. USA, 49(4):459–462 (1963).

  162. 162.

    P. Libermann, “Surconnexions. Propriétés générales,” C. R. Acad. Sci., 258(26):6327–6330 (1964).

  163. 163.

    P. Libermann, “Sous-variétés géodésiques et asymptotiques relativement à une surconnexion,” C. R. Acad. Sci., 259(18):2948–2951 (1964).

  164. 164.

    P. Libermann, “Sur la géométrie des prolongements des espaces fibrés vectoriels,” Ann. Inst. Fourier, 14(1):145–172 (1964).

  165. 165.

    P. Liberman, “Surconnexions et singularités des applications,” C. R. Acad. Sci., 260(3):776–779 (1965).

  166. 166.

    P. Libermann, “Surconnexions et connexions affines spéciales,” C. R. Aead. Sci., 261(15):2801–2804 (1965).

  167. 167.

    P. Libermann, “Calcul tensoriel et connexions d'ordre supérieur,” An. Acad. Brasil Cienc., 37(1):17–29 (1965).

  168. 168.

    P. Libermann, “Sur le tenseur de structure d'ordre supérieur,” C. R. Acad. Sci., 265(22):A740-A743 (1967).

  169. 169.

    A. Lichnerowicz, “Groupes d'holonomie,” Proc. Internat. Congr. Mathematicians, 1954, Amsterdam, Vol.1, Groningen-Amsterdam (1957), pp. 334–347.

  170. 170.

    A. Lichnerowicz, “Transformations des variétés à connexion linéaire et des variétés riemanniennes,” Einseigen. Math. 8(1–2):1–15 (1962).

  171. 171.

    P. Mastrogiacomo, “Enti geometrici associati ad una connessione tensoriale per tensori controvarianti e covarianti m-pli,” Rend. Mat. e Applic., 18(3–4):426–449 (1959).

  172. 172.

    P. Mastrogiacomo, “Sul tensore di torsione di una connessione tensoriale per tensori controvarianti e covarianti m-pli,” Riv. Mat. Univ. Parma, 1(2):279–292 (1960).

  173. 173.

    P. Mastrogiacomo, “Su alcune classi particilari di connessioni tensoriali per tensori controvarianti e covarianti m-pli,” Ann. di Mat. Pura ed Appl.,Vol. 55, 245–272 (1961).

  174. 174.

    A. Mihai, “Conexiuni meromorfe,” Studii si cercetari mat. Acad. RSR, 20(6):859–865 (1968).

  175. 175.

    J. Milnor, “On the existence of a connection with curvature zero,” Comment. Math. Helv., 32(3):215–223 (1958).

  176. 176.

    P. Molino, “Espaces homogénes semi-réductifs et connexione subordonées,” C. R. Acad. Sci., 252(22):3379–3380 (1961).

  177. 177.

    P. Molino, “Champs d'éléments sur un espace fibré principal différentiable,” Thès. Doct. Sci. Math., Fac. Sci. Univ. Paris, 1963, Luisant-Chartres (1964), 59 pp.

  178. 178.

    P. Molino, “Champs d'éléments sur un espace fibré principal differentiable,” Ann. Inst. Fourier, 14(2):163–219 (1964).

  179. 179.

    F. Molino, “Sous-modules transitifs,” Bull. Soc. Math. France, 94(1):15–24 (1966).

  180. 180.

    A. Morimoto, “Sur la classification des espaces fibrés vectoriels holomorphes sur un tore complexe admettant des connexions holomorphes,” Nagoya Math. J., Vol. 15, 83–154 (1959).

  181. 181.

    L. Muracchini, “Transformazioni puntuali fra spazi conformi e connessioni conformi,” Boll. Unione Mat. Ital., 17(2):191–198 (1962).

  182. 182.

    Ch. Murărescu, “La théorie des variétés d'un espace à connexion projective sans torsion. I,” An. Stiint. Univ. Iasi, Sec. la, 12(2):333–339 (1966).

  183. 183.

    Ch. Murărescu, “Sur la théorie locale des distributions définies sur un espace à connexion projective,” Rev.Roumaine Math. Pures et Appl., 13(7):1001–1007 (1968).

  184. 184.

    M. S. Narasimhan, “Existence of universal connections,” General Topology and Its Relation to Modern Analysis and Algebra, Academic Press, Prague, Publ. House Czechosl. Acad. Sci. (1962), p. 286

  185. 185.

    M. S. Narasimhan and S. Ramanan, “Existence of universal connections,” Amer. J. Math., 83(3):563–572 (1961).

  186. 186.

    M. S. Narasinhan, “Existence of universal connections. II,” Amer. J. Math, 85(2):223–231 (1963).

  187. 187.

    Ngo Van Que, “De la connexion d'ordre supérieur,” C. R. Acad. Sci., 259(13):2061–2064 (1964).

  188. 188.

    H. K. Nickerson, “On differential operators and connections,” Trans. Amer. Math. Soc., 99(3):509–539 (1961).

  189. 189.

    K. Nomizu, “Recent development in the theory of connections and holonomy groups,” Advances Math., 1(1):1–49 (1961).

  190. 190.

    K. Nomizu, Recent Developments in the Theory of Connections and Holonomy Groups, Academic Press (1962).

  191. 191.

    K. Nomizu and H. Ozeki, “On the degree of differentiability of curves used in the definition of the holonomy group,” Bull Amer. Math. Soc., 68(2):74–75 (1962).

  192. 192.

    K. Ogiue, “Theory of conformal connections,” Kodai Math. Semin. Repts, 19(2):193–224 (1967).

  193. 193.

    V. Oproiu, “Asupra conexiunilor din spatiul fibrat tangent la un spatiu fibrat principal,” Studii si cercetărimat., Acad. RSR, 19(4):531–535 (1967).

  194. 194.

    V. Oproiu, “On the differential geometry of the tangent bundle,” Rev. Roumaine Math. Pures et Appl. 13(6):847–855 (1968).

  195. 195.

    Mau Quan Pham, “Introduction a la géométrie des variétés différentiables,” Paris, Dunod, No. XVI, (1969), 278 pp.

  196. 196.

    E. Picasso, “Varietà a connessione metrica tensoriale,” Atti Accad. Naz. Lincei. Rend. Cl Sci. Fis., Mat. e Natur., 36(6):808–813 (1964).

  197. 197.

    E. Picasso, “Metriche riemanniane tensoriali,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur., 39(3–4):175–182 (1965).

  198. 198.

    W. F. Pohl, “Connexions in differential geometry of higher order,” Trans. Amer. Math. Soc., 125(2):310–325 (1966).

  199. 199.

    T. Postelnicu, “Asupra corespondentelor între două plane proiective,” Lucrările consf. geométrie si topol., 1958, Bucuresti, Acad. RPS (1962), pp. 179–183.

  200. 200.

    C. Rea, “Sulla riducibilità di una famiglia di connessioni,” An. Scuola Norm. Super. Pisa. Sci. Fis. e Mat., 22(1):31–39 (1968).

  201. 201.

    T. Saeki, “The holonomy covering space in principal fibre boundles,” Tohoku Math. J., 10(3):304–312 (1958).

  202. 202.

    S. Sasaki and K. Yano, “On the structure of spaces with normal projective connexions whose groups of holonomy fix a hyperquadric or a quadric of (N-2)-dimension,” Tohoku Math. J., Vol. 1, 31–39 (1949).

  203. 203.

    H. Sasayama, “On intrinsic derivation of generalized order in the space of R. König's connection,” J. Spat. Math. Sasayama Res. Room, 4(1):1–20 (1961).

  204. 204.

    H. Sasayama, “On spaces of quasi noneuclidean connections,” J. Spat. Math. Sasayama Res. Room, 8(1–2–3):1–20 (1965).

  205. 205.

    S. Sato, “On a projective connection and Riemannian metric,” Tensor, Vol. 14, 1–5 (1963).

  206. 206.

    J. A. Schouten, “Sur les connexions conformes et projectives de M. Cartan et la connexion linéaire générale de M. König,” C. R. Acad. Sci., Vol. 178, 2044–2046 (1924).

  207. 207.

    J. A. Schouten, “Erlanger Program und Übertragunslehre. Neue Gesichtspunkte zur Grundlegung der Geometrie,” Rend. Circ. Matem. Palermo, Vol. 50, 142–189 (1926).

  208. 208.

    J. A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and It's Geometrical Applications, 2ded., Berlin-Göttingen-Heidelberg, Springer (1954).

  209. 209.

    A. Seiken, “Connexions in principal fibre bundles with group GL (nm, R),” Doct. Diss., Univ. Michigan, 1963, 64 pp.; Dissert. Abstr., 24(6): 2504 (1963).

  210. 210.

    I. M. Singer, “The geometric interpretation of a special connection,” Pacif. J. Math., 9(2):585–590 (1959).

  211. 211.

    W. Slebodzinski, “Sur les prolongements d'une connexion linéaire,” Bull. Acad. Polon. Sci., Sér. Sci. Math., Astron.et Phys., 8(3):145–150 (1960).

  212. 212.

    F. Speranza, “Determinazione di connessioni prospective,” Boll. Unione Mat. Ital., 18(2):101–107 (1963).

  213. 213.

    F. Speranza, “Sulle connessioni prospettive. Atti Accad. Sci. Ist. Bologna, C1. Sci. Fis. Rend., 1962–1963, 10(2):91–122 (1963).

  214. 214.

    F. Speranza, “Sulla nozione di connessione,” Boll. Unione Mat. Ital., 20(3):367–378 (1965).

  215. 215.

    F. Speranza, “Sui gruppi d'olonomia degli spazi a connessione proiettiva o affine generalizzati,” Boll. Unione Mat. Ital., 21(1):48–64 (1966).

  216. 216.

    F. Speranza, “Connessioni prospecttive in un sistema di spazi linear,” Period. mat., 46(1–2):326–339 (1968).

  217. 217.

    M. Stoka, “Corrispondenze tra spazi proiettivi a connessione constante,” Boll. Unione Mat. Ital., 17(1):40–47 (1962).

  218. 218.

    M. Stoka, “Sur les groupes de mouvement d'une correspondance entre les plans projectifs,” Math. Notae, 18(1):159–184 (1962).

  219. 219.

    M. Stoka, “Sur les correspondances entre des espaces projectifs à connexion projective linéaire,” Czechoslovak. Math. J., 13(4):622–631 (1963).

  220. 220.

    M. Stoka, “Asupra corespondentei de speta a treia între plane projective,” Studii si cercetări mat., Acad. RPR, 17(4):547–562 (1965).

  221. 221.

    A. Švec, “L'application des variétés à connexion à certains problèmes de la géométrie différentielle,” Czechoslovak. Math. J., 10(4):523–550 (1960).

  222. 222.

    A. Švec, “Les espaces de König du point de vue des espaces fibres à connexion,” Comment. Math. Univ. Carolinae, 3(1):11–14 (1962).

  223. 223.

    A. Švec, “Le calcul tensoriel généralisé,” Comment. Math. Univ. Carolinae, 1(2):17–22 (1960).

  224. 224.

    A. Švec, “Au sujet de la definition des variétés de Kön1ig,” Czechoslovak. Math. J., 14(2):222–234 (1964).

  225. 225.

    A. Švec, “Cartan's method of specialization of frames,” Czechoslovak. Math. J., 16(4):552–599 (1966).

  226. 226.

    A. Szybiak, “On prolongation of fibre structures and connections of higher order,” Bull. Acad. Polon. Sci., Sér. Sci. Math., Astron. Phys., 13(9):661–664 (1965).

  227. 227.

    A. Szybiak, “On the general connections and continuity of the operator V,” Bull. Acad. Polon. Sci. Ser. Sci. Math., Astron, et Phys., 13(9):665–667 (1965).

  228. 228.

    A. Szybiak, “Covariant differentation of geometric objects,” Zesz,Nauk Uniw. Jageill., No. 131, 89–100 (1966).

  229. 229.

    A. Szybiak, “Covariant differentation of geometric objects,” Rozpr. Mat., No. 56 (1967), 41 pp.

  230. 230.

    T. Takasu, “Extended affine principal fibre bundles,” Ann. Mat. Pura ed Appl., 54, 85–97 (1961). (1961).

  231. 231.

    S. Takizawa, “On the induced connections,” Mem. Coll. Sci. Univ. Kyoto, A. Math., 30(2):105–118 (1957).

  232. 232.

    S. Takizawa, “On soudures of differentiable fibre bundles,” J. Math. Kyoto Univ., 2(3):237–276 (1963).

  233. 233.

    L. Tamassy, “Über den Affinzusammenhang von zu Tangentialräumen gehörendes Produkträumen,” Acta Math. Acad. Scient. Hung., 11(1–2):65–82 (1960).

  234. 234.

    L. Tamassy, “Über tensorielle Übertragungen Spezieller,” Art.Publs. Math., 11(1–4):273–277 (1964).

  235. 235.

    L. Tamassy, “Über autoparallele Flächen tensorial zusammenhängender Räume,” Acta math., Acad. Scient. Hung., 16(1–2):75–87 (1965).

  236. 236.

    L. Tamassy, “Aus dekomponierbaren Elementen bestehende Gebilde eines Produktraumes,” Mat. Vesn., 2(2):121–126 (1965).

  237. 237.

    K. Tandai, “On connections of geometric structures,” Proc. Japan. Acad., 44(1):32–34 (1968).

  238. 238.

    C. Teleman, “Généralisation du groupe fondamental,” Ann. Stiint. École Norm. Super 77(3):195–234 (1960).

  239. 239.

    C. Teleman, “Sur la classification des espaces fibrés,” C. R. Acad. Sci., 253(6):935–936 (1961).

  240. 240.

    C. Teleman, “Sur les connexions infinitésimales qu'on peut definir dans les structures fibrées différentiables de base donnée,” Ann. Mat. Pura ed Appl. Vol. 62, 379–412 (1963).

  241. 241.

    C. Teleman, “Sur une théorie générale des connexions,” Bull. Math. Soc. Sci. Mat. RSR, 10(1–2):179–199 (1966(1967)).

  242. 242.

    Tran van Tan, “Theorie des connexions spinorielles déduites de connexions euclidiennes,” C. R. Acad. Sci., 253(21):2320–2322 (1961).

  243. 243.

    I. Vaisman, “A supra geometriei directiilor de pe o varietate diferentiabila,” An. Univ. Ser. Stiinte Mat. Fiz.,Vol. 2, 249–263 (1964).

  244. 244.

    I. Vaisman, “Courbes, configurations de Myller et distributions dans les espaces à connexion symplectique,” An. Stiint.Univ. Iasi, Sec. Ia, 10(2):417–436 (1964).

  245. 245.

    I. Vaisman, Contributions à la géométrie différentielle projective-symplectique,” An. Stiint.Univ. Iasi, Sec. 1a, Monogr. No. 1 (1966), 126 pp.

  246. 246.

    I. Vaisman, “Surfaces holonomes et non holonomes dans les espaces à connexion symplectique à trois dimensions,” An. Stiint. Univ. Iasi, Sec. 1a, 12(1):175–183 (1966).

  247. 247.

    I. Vaisman, “The curvature groups of a space form,” Ann. Scuola Norm. Super Pisa, Sci. Fize Mat., 22(2):331–341 (1968).

  248. 248.

    A. Verona, “Connexions généralisées,” Rev. Roumaine Math. Pures et Appl., 13(6):891–896 (1968).

  249. 249.

    J. Vilms, “Connections on tangent bundles,” J. Different. Geom., 1(3):235–243 (1967).

  250. 250.

    J. Virsik, “Non-holonomic connections on vector bundles I,” Czechoslovak. Math. J., 17(1):108–147 (1967).

  251. 251.

    J. Virsik, “Non-holonomic connections on vector bundles, II,” Czechoslovak. Math. J., 17(2):200–224 (1967).

  252. 252.

    V. Virsik, “Über Zusammenhänge höherer Ordnungen in Vektorraumbüdeln,” Math. Nachr., 34(3–4):219–227 (1967).

  253. 253.

    J. Virsik, “A generalized point of view to higher order connections on fibre bundles,” Czechoslovak. Math. J., 19(1):110–142 (1969).

  254. 254.

    V. V. Vagner (Wagner), “Differential geometry of the family of Rk's in Rn and of the family of totally geodesic Sk−1's in Sn−1 of positive curvature,” Mat. Sb., 10(52):165–212 (1942).

  255. 255.

    V. V. Vagner (Wagner), “Geometria del calcolo delle variazioni,” Centro Internationale Matematico Estivo, 1961, v. II, Roma, Edizioni Cremonese (1965).

  256. 256.

    H. C. Wang, “Invariant connections over principal fiber bundles,” Nagoya Math. J., Vol. 13, 1–19 (1958).

  257. 257.

    H. Weyl, Raum, Zeit, Materie, Berlin (1918).

  258. 258.

    A. P. Whitman and L. Conlon, “A note on holonomy,” Proc. Amer. Math. Soc., 16(5):1046–1051 (1965).

  259. 259.

    J. A., Wolf, “Differentiable fibre spaces and mappings compatible with Riemannian metrics,” Michigan Math. J., 11(1):65–70 (1964).

Download references

Additional information

Translated from Itogi Nauki, Seriya Matematika (Algebra, Topologiya, Geometriya), pp. 123–168, 1969.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lumiste, Ü.G. Connection theory in bundle spaces. J Math Sci 1, 363–390 (1973). https://doi.org/10.1007/BF01083670

Download citation

Keywords

  • Bundle Space
  • Connection Theory