Advertisement

Theoretical and Mathematical Physics

, Volume 93, Issue 2, pp 1292–1307 | Cite as

Poisson-Lie groups. The quantum duality principle and the twisted quantum double

  • M. A. Semenov-Tyan-Shanskii
Article

Abstract

The quantum duality principle relates the quantum groups that arise on the quantization of Poisson-Lie dual groups and generalizes Fourier duality. Also considered are the theory of the Heisenberg double, which replaces the cotangent bundle for quantum groups, and its deformations (the twisted double).

Keywords

Fourier Quantum Group Cotangent Bundle Dual Group Duality Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Drinfeld,Quantum Groups, Proc. Internat. Congr. Math. Berkeley, 1986, Am. Math. Soc., Providence (1987), p. 798.Google Scholar
  2. 2.
    M. Jimbo,Lett. Math. Phys.,10, 63 (1985).Google Scholar
  3. 3.
    N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev,Algebra i Analiz,1, 178 (1989).Google Scholar
  4. 4.
    L. D. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, “Quantization of Lie groups and Lie algebras,” in:Algebraic Analysis, Vol. 1 (eds. M. Kashiwara and T. Kawai), Academic Press, New York (1988), p. 129.Google Scholar
  5. 5.
    V. G. Drinfel'd,Dokl. Akad. Nauk SSSR,268, 285 (1983).Google Scholar
  6. 6.
    A. Weinstein,J. Diff. Geom. 18, 523 (1983).Google Scholar
  7. 7.
    F. A. Berezin,Funktsional Analiz i Ego Prilozhen.,1, 4 (1967).Google Scholar
  8. 8.
    A. Yu. Alekseev, L. D. Faddeev, and M. A. Semenov-Tian-Shanski, “Hidden quantum group inside Kac-Moody algebra,” Preprint LOMI E1 [in English], Leningrad Branch, V. A. Steklov Mathematic Institute (1991).Google Scholar
  9. 9.
    A. N. Kirillov and N. Yu. Reshetikhin,Commun. Math. Phys.,134, 421 (1990).Google Scholar
  10. 10.
    S. Levendorski and Y. Soibelman,J. Geom. Phys.,7, 241 (1991).Google Scholar
  11. 11.
    M. Rosso,Common. Math. Phys.,117, 307 (1988).Google Scholar
  12. 12.
    M. A. Semenov-Tian-Shanski,Publ. RIMS, Kyoto University,21, 1237 (1985).Google Scholar
  13. 13.
    J. H. Lu, “Momentum mappings and reduction of Poisson actions,” in:Symplectic Geometry, Groupoids, and Integrable Systems (eds. P. Dozor and A. Weinstein), No. 20, MSRI Publications (1991), p. 209.Google Scholar
  14. 14.
    A. A. Kirillov,Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).Google Scholar
  15. 15.
    N. Yu. Reshetikhin and M. A. Semenov-Tian-Shanski,J. Geom. Phys.,5, 533 (1989).Google Scholar
  16. 16.
    A. Yu. Alekseev and L. D. Faddeev,Commun. Math. Phys.,141, 413 (1991).Google Scholar
  17. 17.
    N. Yu. Reshetikhin and M. A. Semenov-Tian-Shanski,Lett. Math. Phys. 19, 133 (1990).Google Scholar
  18. 18.
    A. A. Belavin and V. G. Drinfeld,Sov. Sci. Rev., Sec. C,4, 93 (1984).Google Scholar
  19. 19.
    S. Parmentier, “Twisted affine Poisson structures and the classical Yang-Baxter equation,” Preprint MPI/91-82, M. Planck Institut für Math., Bonn.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • M. A. Semenov-Tyan-Shanskii

There are no affiliations available

Personalised recommendations