Poisson-Lie groups. The quantum duality principle and the twisted quantum double
Article
- 233 Downloads
- 36 Citations
Abstract
The quantum duality principle relates the quantum groups that arise on the quantization of Poisson-Lie dual groups and generalizes Fourier duality. Also considered are the theory of the Heisenberg double, which replaces the cotangent bundle for quantum groups, and its deformations (the twisted double).
Keywords
Fourier Quantum Group Cotangent Bundle Dual Group Duality Principle
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.V. G. Drinfeld,Quantum Groups, Proc. Internat. Congr. Math. Berkeley, 1986, Am. Math. Soc., Providence (1987), p. 798.Google Scholar
- 2.M. Jimbo,Lett. Math. Phys.,10, 63 (1985).Google Scholar
- 3.N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev,Algebra i Analiz,1, 178 (1989).Google Scholar
- 4.L. D. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, “Quantization of Lie groups and Lie algebras,” in:Algebraic Analysis, Vol. 1 (eds. M. Kashiwara and T. Kawai), Academic Press, New York (1988), p. 129.Google Scholar
- 5.V. G. Drinfel'd,Dokl. Akad. Nauk SSSR,268, 285 (1983).Google Scholar
- 6.A. Weinstein,J. Diff. Geom. 18, 523 (1983).Google Scholar
- 7.F. A. Berezin,Funktsional Analiz i Ego Prilozhen.,1, 4 (1967).Google Scholar
- 8.A. Yu. Alekseev, L. D. Faddeev, and M. A. Semenov-Tian-Shanski, “Hidden quantum group inside Kac-Moody algebra,” Preprint LOMI E1 [in English], Leningrad Branch, V. A. Steklov Mathematic Institute (1991).Google Scholar
- 9.A. N. Kirillov and N. Yu. Reshetikhin,Commun. Math. Phys.,134, 421 (1990).Google Scholar
- 10.S. Levendorski and Y. Soibelman,J. Geom. Phys.,7, 241 (1991).Google Scholar
- 11.M. Rosso,Common. Math. Phys.,117, 307 (1988).Google Scholar
- 12.M. A. Semenov-Tian-Shanski,Publ. RIMS, Kyoto University,21, 1237 (1985).Google Scholar
- 13.J. H. Lu, “Momentum mappings and reduction of Poisson actions,” in:Symplectic Geometry, Groupoids, and Integrable Systems (eds. P. Dozor and A. Weinstein), No. 20, MSRI Publications (1991), p. 209.Google Scholar
- 14.A. A. Kirillov,Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).Google Scholar
- 15.N. Yu. Reshetikhin and M. A. Semenov-Tian-Shanski,J. Geom. Phys.,5, 533 (1989).Google Scholar
- 16.A. Yu. Alekseev and L. D. Faddeev,Commun. Math. Phys.,141, 413 (1991).Google Scholar
- 17.N. Yu. Reshetikhin and M. A. Semenov-Tian-Shanski,Lett. Math. Phys. 19, 133 (1990).Google Scholar
- 18.A. A. Belavin and V. G. Drinfeld,Sov. Sci. Rev., Sec. C,4, 93 (1984).Google Scholar
- 19.S. Parmentier, “Twisted affine Poisson structures and the classical Yang-Baxter equation,” Preprint MPI/91-82, M. Planck Institut für Math., Bonn.Google Scholar
Copyright information
© Plenum Publishing Corporation 1992