Advertisement

Applied Scientific Research

, Volume 51, Issue 1–2, pp 533–538 | Cite as

Closure of the two-point correlation Equation as a basis for Reynolds stress models

  • M. Oberlack
  • N. Peters
Chapter VII: Turbulence Modelling And Compressibility Effects

Abstract

A closure model for the von Kármán-Howarth-Equation is introduced. The model holds for a wide range of well accepted turbulence-theories for homogeneous isotropic turbulence, as there is Kolmogorovs first and second similarity hypothesis and the invariant theory, which is a generalization of Loitsianskiis and Birkhoffs integrals. Experimental verification supports the model in a range of reliable data and numerical calculations produces nearly identical results with the EDQNM theory. Supposing locally isotropic turbulence a moment expansion of the correlation equation brings out the production term in the ε-equation in a modified form. The deviation of\(c_{\varepsilon _1 } \) from 3/2 emerges from the nonlocal dependence of dissipation.

Key words

two-point correlation equation Reynolds-stress models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolmogorov A.N.: 1941,C.R. Acad. Sci. USSR 30, 301–305Google Scholar
  2. 2.
    de Kármán T., Howarth L.: 1938,Proc. Roy. Soc. A 164, 192–215Google Scholar
  3. 3.
    Hasselmann K.: 1958,Dtsch. Hydgr. Z. 11, 207–217Google Scholar
  4. 4.
    Domaradzki J.A., Mellor G.L.: 1984,JFM 140, 45–61Google Scholar
  5. 5.
    Stewart R.W., Townsend A.A.: 1951,Phil. Trans. Roy. Soc. Lond. A 243, 359–386Google Scholar
  6. 6.
    Lesieur M., Schertzer D.: 1978,Journal de Mécanique vol.17 no 4, 609–646Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • M. Oberlack
    • 1
  • N. Peters
    • 1
  1. 1.Institut für Technische MechanikRWTH AachenGermany

Personalised recommendations