Applied Scientific Research

, Volume 51, Issue 1–2, pp 3–7 | Cite as

The vorton method

Theory and applications to fluid mechanics
  • A. J. Q. Alkemade
  • F. T. M. Nieuwstadt
  • E. van Groesen
Chapter I: Dynamical Systems And Transition

Abstract

After a general introduction to the vorton method, which is a vortex method resembling the 2-D point-vortex method, a set of equations describing dynamics of 3-D vortex singularities (vortons) is derived, avoiding the inconsistency in the derivation of other vorton equations which have been applied. Though inviscid, numerical simulations show reconnection phenomena.

Key words

vortex methods vorton method reconnection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.I. Aksman, E.A. Novikov: 1988, "Reconnections of vortex filaments".Fluid Dyn. Res. 3, 239.Google Scholar
  2. 2.
    T.Y. Hou, J. Lowengrub: 1990, "Convergence of the point vortex method for the 3-D Euler equations".Comm. Pure Appl. Math. 43, 965.Google Scholar
  3. 3.
    M. Kiya, H. Ishii: 1991, "Deformation and splitting of pseudo-elliptical vortex rings". In:Advances in Turbulence 3 (eds. A.V. Johanson, P.H. Alfredsson), Springer, Heidelberg.Google Scholar
  4. 4.
    S. Kuwabara: 1988, "Pseudo-canonical formulation of 3-dimensional vortex motion and vorton model analysis".Fluid Dyn. Res. 3, 163.Google Scholar
  5. 5.
    E.A. Novikov: 1983, "Generalized dynamics of three-dimensional vortical singularities (vortons)".Sov. Phys. JETP 57, 566.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • A. J. Q. Alkemade
    • 1
  • F. T. M. Nieuwstadt
    • 1
  • E. van Groesen
    • 2
  1. 1.Laboratory for Aero- and HydrodynamicsDelft University of TechnologyDelftThe Netherlands
  2. 2.Faculty of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations