Method of orbits in the representation theory of complex Lie groups
Article
- 109 Downloads
- 10 Citations
Keywords
Functional Analysis Representation Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Literature Cited
- 1.J. Dixmier, Enveloping Algebras, Elsevier (1977).Google Scholar
- 2.A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1978).Google Scholar
- 3.B. Kostant, "Quantization and unitary representations," Usp. Mat. Nauk,18, No. 1, 163–225 (1973).Google Scholar
- 4.W. Borho, P. Gabriel, and R. Rentschler, Lect. Notes Math., No. 357, Springer-Verlag, Berlin (1973).Google Scholar
- 5.M. Duflo, "Operateurs differentiels bi-invariants sur une group de Lie," Ann. Sci. Ecole Norm. Sup.,10, 265–283 (1977).Google Scholar
- 6.M. Vergne, "La structure de Poisson sur l'algebre symmetrique d'une algebre de Lie nilpotent," Bull. Soc. Math. France,100, 301–335 (1972).Google Scholar
- 7.R. Renschler and M. Vergne, "Sur le semicentre du corps enveloppant d'une algebre de Lie," Ann. Sci. Ecole Norm. Sup.,6, 389–406 (1973).Google Scholar
- 8.M. Kashiwara and M. Vergne, "The Campbell — Hausdorff formula and invariant hyperfunctions," Invent. Math.,47, 249–272 (1978).Google Scholar
- 9.V. A. Ginzburg, "The method of orbits and perturbation theory," Dokl. Akad. Nauk SSSR,249, No. 3, 525–528 (1979).Google Scholar
- 10.F. A. Berezin, "Some remarks about the associative hull of a Lie algebra," Funkts. Anal. Prilozhen.,1, No. 2, 1–14 (1967).Google Scholar
- 11.J. Dixmier, M. Duflo, and M. Vergne, "Sur la representation coadjoints d'une algebre de Lie," Composito Math.,29, 309–335 (1975).Google Scholar
- 12.L. Hörmander, "Fourier integral operators," Matematika,16, No. 2, 67–136 (1972).Google Scholar
- 13.L. Auslander and B. Kostant, "Polarization and unitary representations of solvable Lie groups," Invent. Math.,14, 225–354 (1971).Google Scholar
- 14.R. Lipsman, "Characters of Lie groups. II," J. Anal. Math.,31, 257–286 (1977).Google Scholar
- 15.M. Vergne and J. Wolf, "Existence des polarisations positives dans les algebres de Lie," C. R. Acad. Sci. Paris,274, 299–302 (1972).Google Scholar
Copyright information
© Plenum Publishing Corporation 1981