Applied Physics B

, Volume 58, Issue 2, pp 143–148

Experimental study of enhanced emission of the laser-ablated plume in backing gas

  • H. P. Gu
  • Q. H. Lou
  • N. H. Cheung
  • S. C. Chen
  • Z. Y. Wang
  • P. K. Lin
Article

Abstract

The effects of background gases on the optical emission of the excimer-laser-ablated plume from a brass target have been studied experimentally. It is found that the plume emission can be enhanced significantly in a proper gas ambient. In hydrogen, the highest peak intensity is detected, and in argon, there is a distinctive difference in the pressure-dependent emission between in He and in the other three gases, Ar, N2 and H2. Moreover, the monitored line peak intensity remains unchanged in Ar and N2 and increases in H2 within a distance above the target surface; but in He, the observed peak intensity decreases with distance like in vacuum. Furthermore, the emissions of several more atomic lines of Cu and Zn atoms from the plume are also found to be enhanced in the same manner in gas ambient. Some physical processes involved in the plume expansion and the possible mechanisms for the enhanced emission of the plume in backing gas are discussed.

PACS

36.40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.T. Chen, R.E. Russo: Spectrochim. Acta46B, 1471 (1991)Google Scholar
  2. 2.
    A. Quentmeier, W. Sdorra, K. Niemax: Spectrochim. Acta45B, 537 (1990)Google Scholar
  3. 3.
    K. Dittrich, R. Wennrich: Prog. Anal. Atom. Spectrosc.7, 139 (1984)Google Scholar
  4. 4.
    Y. Iida, A. Tsuge, Yoshinori, H. Maorikawa, T. Ishizuka: J. Anal. Atom. Spectrosc.6, 541 (1991)Google Scholar
  5. 5.
    Y. Iida: Spectrochim. Acta45B, 427 (1990)Google Scholar
  6. 6.
    Y. Iida: Appl. Spectrosc.43, 229 (1989)Google Scholar
  7. 7.
    Y. Iida: Spectrochim. Acta45B, 1353 (1990)Google Scholar
  8. 8.
    K. Kagawa, S. Yokoi, S. Nakajima: Opt. Commun.45, 261 (1983)Google Scholar
  9. 9.
    A.L. Lewes, II, E.H. Piepmeier: Appl. Spectrosc.37,523 (1983)Google Scholar
  10. 10.
    R.W. Dreyfus: J. Appl. Phys.69, 1721 (1991)Google Scholar
  11. 11.
    R. Kelly, R.W. Dreyfus: Surf. Sci.198, 263 (1988)Google Scholar
  12. 12.
    C.E. More:Atomic Energy Levels, vol. II (National Bureau of Standards, Washington, DC 1971)Google Scholar
  13. 13.
    Y.B. Zel'dovich, Y.P. Raizer:Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York 1967)Google Scholar
  14. 14.
    B.R. Finke, G. Simon: J. Phys. D23, 67 (1990)Google Scholar
  15. 15.
    A.D. Sappey, T.K. Gamble: J. Appl. Phys.72, 5095 (1992)Google Scholar
  16. 16.
    A.D. Sappey, T.K. Gamble: Appl. Phys. B53, 353 (1991)Google Scholar
  17. 17.
    R.M. Measures, P.G. Cardinal: Phys. Rev. A23, 804 (1981)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. P. Gu
    • 1
  • Q. H. Lou
    • 1
  • N. H. Cheung
    • 2
  • S. C. Chen
    • 2
  • Z. Y. Wang
    • 2
  • P. K. Lin
    • 2
  1. 1.Shanghai Institute of Optics and Fine MechanicsAcademia SinicaShanghaiPeople's Republic of China
  2. 2.Department of PhysicsHong Kong Baptist CollegeKowloonHong Kong

Personalised recommendations