Applied Physics B

, Volume 58, Issue 2, pp 117–122 | Cite as

Nonlinear mode coupling in doubly resonant frequency doublers

  • R. Paschotta
  • K. Fiedler
  • P. Kürz
  • J. Mlynek
Article

Abstract

The concept of a doubly resonant frequency doubler can be used for a variety of experiments concerning both classical phenomena like efficient frequency doubling at low power levels and quantum effects like squeezed states of light or Quantum Non Demolition (QND) measurements. In many of these experiments the strength of the nonlinear coupling of fundamental and second-harmonic modes is of crucial importance. First we treat the general theory for the calculation of the coupling parameterκ, which depends not only on properties of the nonlinear material but also on resonator geometry and some optical phases. On this basis we discuss in detail the situation for two different monolithic resonator geometries, namely a linear (standing-wave) and a ring (travelling-wave) cavity. Finally we compare theoretical predictions for these resonators to the experimentally achieved results.

PACS

42.65.Ky 42.50.Dv 

References

  1. 1.
    W.J. Kozlovsky, C.D. Nabors, R.L. Byer: IEEE J. QE-24, 913 (1988) and references thereinGoogle Scholar
  2. 2.
    D.H. Jundt, M.M. Feyer, R.L. Byer: Opt. Lett.16, 1856 (1991)Google Scholar
  3. 3.
    C. Zimmermann, T.W. Hänsch, R.L. Byer, S. O'Brien, D. Welch: Appl. Phys. Lett.61, 2741 (1992)Google Scholar
  4. 4.
    Z.Y. Ou, S.F. Pereira, E.S. Polzik, H.J. Kimble: Opt. Lett.17, 640 (1992)Google Scholar
  5. 5.
    K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, J. Mlynek: Opt. Lett.18, 1786 (1993)Google Scholar
  6. 6.
    P.D. Drummond, K.J. McNeil, D.F. Walls: Opt. Acta27, 321 (1980)Google Scholar
  7. 7.
    P.D. Drummond, K.J. McNeil, D.F Walls: Opt. Acta28, 211 (1981)Google Scholar
  8. 8.
    S.F. Pereira, Min Xiao, H.J. Kimble, J.L. Hall: Phys. Rev. A38, 4931 (1988)Google Scholar
  9. 9.
    A. Sizmann, R.J. Horowicz, G. Wagner, G. Leuchs: Opt. Commun.80, 138 (1990)Google Scholar
  10. 10.
    P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek: In Quantum Noise Reduction in Optical Systems, ed. by E. Giacobino, C. Fabre, Appl. Phys. B55, 216 (1992)Google Scholar
  11. 11.
    P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, J. Mlynek: Europhys. Lett.24, 449 (1993)Google Scholar
  12. 12.
    R.J. Horowicz: Europhys. Lett.10, 537 (1989)Google Scholar
  13. 13.
    M. Dance, M.J. Collett, D.F. Walls: Phys. Rev. Lett.66, 1115 (1991)Google Scholar
  14. 14.
    H.J. Kimble, J.L. Hall: InQuantum Optics IV, ed. by J.D. Harvey, D.F. Walls, Springer Proc. Phys., Vol. 12 (Springer, Berlin Heidelberg 1986) pp. 58Google Scholar
  15. 15.
    H. Kogelnik, T. Li: Appl. Opt.5, 1550 (1966)Google Scholar
  16. 16.
    G.D. Boyd, D.A. Kleinman: J. Appl. Phys.39, 3597 (1968)Google Scholar
  17. 17.
    A. Räuber: InCurrent Topics Material Science, Vol. 1, ed. by E. Kaldis (North-Holland, Amsterdam 1987) pp. 481Google Scholar
  18. 18.
    A. Sizmann, K. Fiedler, P. Kürz, R. Paschotta, J. Mlynek, G. Leuchs: Technical Digest EQEC (1991) p. 145Google Scholar
  19. 19.
    S. Schiller, I.I. Yu, M.M. Feyer, R.L. Byer: Opt. Lett.17, 140 (1992)Google Scholar
  20. 20.
    S. Schiller, R.L. Byer: J. Opt. Soc. Am. B10, 1696 (1993)Google Scholar
  21. 21.
    M. Born, E. Wolf:Principles of Optics (Pergamon, Oxford 1975)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. Paschotta
    • 1
  • K. Fiedler
    • 1
  • P. Kürz
    • 1
  • J. Mlynek
    • 1
  1. 1.Universität KonstanzKonstanzGermany

Personalised recommendations