Advertisement

Significance of the pyroxene chemistry from leucite-bearing and related assemblages

  • A. Cundari
  • A. K. Ferguson
Article

Summary

The mineral chemistry of the pyroxene from representative suites of leucite-bearing and related assemblages occurring in south-west Uganda, Roman Region, Australia and Antarctica is considered in terms of some serial characteristics of the host rocks. The pyroxene compositions show distinct and systematic chemical variations, which are evaluated in terms of the ratios Ti/Al and (2−Si)/Al=Td, calculated from the structural formula. Both ratios generally increase from early- to late-crystallized pyroxene compositions but the variations are typical of individual rock series and depend on the level of alkalinity of the host rocks, i.e. (Na+K)/Al and the pressure under which the pyroxene crystallized. Low Ti/Al and Td values result largely from the influence of pressure, while Ti/Al>0.5 and Td>1.0 reflect the chemistry of the host rock, particulary in terms of high (Na+K)/Al ratio. Some experimental data bearing on the genetic interpretation of the pyroxene chemistry from the above assemblages are reappraised.

Keywords

Alkalinity Host Rock Structural Formula Systematic Chemical Mineral Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zur Bedeutung des Pyroxen-Chemismus in Leuzit-führenden und verwandten Gesteinen

Zusammenfassung

Die Mineralchemie des Pyroxens aus repräsentativen Leuzit-führenden und verwandten Gesteinen in Südwest-Uganda, in der Romana, in Australien und in der Antarktis steht in Beziehung zur Charakteristik der Muttergesteine. Die Zusammensetzungen der Pyroxene zeigen klare und systematische chemische Variationen, die auf der Basis der aus der Strukturformel berechneten Verhältniszahlen Ti/Al und (2-Si)/Al=Td bewertet werden. Beide Verhältniszahlen nehmen grundsätzlich von früh- zu spätkristallisierten Pyroxenen zu, jedoch sind diese Variationen typisch für bestimmte Gesteinsserien und abhängig vom Grad der Alkalinität des Muttergesteins, d.h. (Na+K)/Al und vom Druck unter dem der Pyroxen kristallisierte. Niedrige Ti/Al und Td-Werte resultieren vor allem aus dem Einfluß des Druckes, während Ti/Al>0,5 und Td>1,0 die chemische Zusammensetzung des Muttergesteins reflektieren, besonders im Hinblick auf hohe Na+K/Al-Verhältnisse. Einige experimentelle Daten zur genetischen Interpretation des Pyroxen-Chemismus aus den oben genannten Vorkommen werden im Lichte dieser neuen Ergebnisse betrachtet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, K., Kushiro, I., 1968: Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contr. Min. Petrol.18, 326–337.Google Scholar
  2. Bailey, D. K., 1969: The stability of acmite in the presence of H2O. Amer. J. Sci.267-A, 1–16.Google Scholar
  3. Barton, M., Hamilton, D. L., 1979: The melting relationships of a Modupite from the Leucite Hills, Wyoming, to 30 kb. Contr. Min. Petrol.69, 133–142.Google Scholar
  4. —,van Bergen, M. J., 1981: Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming. Contr. Min. Petrol.77, 101–114.Google Scholar
  5. Brown, F. H., Carmichael, I. S. E., 1969: Quaternary volcanoes of the Lake Rudolf region: The basanite-tephrite series of the Korath Range. Lithos2, 239–260.Google Scholar
  6. Carmichael, I. S. E., 1967: The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Contr. Min. Petrol.15, 24–66.Google Scholar
  7. —,Nicholls, J., 1967: Iron-titanium oxides and oxygen fugacities in volcanic rocks. J. Geophys. Res.72, 4665–4687.Google Scholar
  8. Cundari, A., 1973: Petrology of the leucite-bearing lavas in New South Wales. J. Geol. Soc. Austr.20, 465–492.Google Scholar
  9. —, 1975: Mineral chemistry and petrogenetic aspects of the Vico lavas, Roman volcanic Region, Italy. Contr. Min. Petrol.53, 129–144.Google Scholar
  10. —, 1979: Petrogenesis of leucite-bearing lavas of the Roman volcanic Region, Italy. Contr. Min. Petrol.70, 9–21.Google Scholar
  11. —, 1982: Petrology of clinopyroxenite ejecta from Somma-Vesuvius and their genetic implications. Tschermaks Min. Petr. Mitt.30, 17–35.Google Scholar
  12. —,Le Maitre, R. W., 1970: On the petrogeny of the leucite-bearing rocks of the Roman and Birunga volcanic Regions. J. Petrol.11, 33–47.Google Scholar
  13. Dawson, J. B., Smith, J. V., Hervig, R. L., 1977: Late-stage diopside in kimberlite groundmass. N. Jb. Min. Mh.12, 529–543.Google Scholar
  14. Edgar, A. D., Green, D. H., Hibberson, W. O., 1976: Experimental petrology of a highly potassic magma. J. Petrol.17, 339–356.Google Scholar
  15. —,Condliffe, E., Barnett, R. L., Shirran, R. J., 1980: An experimental study of an olivine ugandite magma and mechanisms for the formation of its K-enriched derivatives. J. Petrol.21, 475–497.Google Scholar
  16. Ferguson, A. K., 1973: On hour-glass sector zoning in clinopyroxene. Min. Mag.39, 321–325.Google Scholar
  17. —, 1977: The natural occurrence of aegirine-neptunite solid solution. Contr. Min. Petrol.60, 247–253.Google Scholar
  18. Ferguson, A. K., 1978a: Mineral chemistry and petrological aspects of some leucite-bearing lavas from Bufumbira, south-west Uganda, and related suites. Unpublished Ph.D. thesis, University of Melbourne.Google Scholar
  19. —, 1978: Ca-enrichment in olivine from volcanic rocks. Lithos11, 189–194.Google Scholar
  20. —,Cundari, A., 1975: Petrological aspects and evolution of the leucite-bearing lavas from Bufumbira, south-west Uganda. Contr. Min. Petrol.50, 25–46.Google Scholar
  21. Ferguson, A. K., Sewell, D. K. B., 1978: An overlay program for the online operation of a JEOL JXA.5A electron microprobe using a modifiedMason et al. 2AF correction program. Dept. Geol. Univ. Melbourne, Publ. No. 5.Google Scholar
  22. Hartman, P., 1969: Can Ti4+ replace Si4+ in silicates? Min. Mag.37, 366–369.Google Scholar
  23. Holmes, A., Harwood, H. F., 1937: The volcanic area of Bufumbira. Part II. Mem. geol. Surv. Uganda3, 300 pp.Google Scholar
  24. Lloyd, F. E., 1981: Upper-mantle metasomatism beneath a continental rift: clinopyroxenes in alkali mafic lavas and nodules from south-west Uganda. Min. Mag.44, 315–323.Google Scholar
  25. Lloyd, F. H., Bailey, D. K., 1975: Light element metasomatism of the continental mantle: the evidence and consequence. Phys. Chem. Earth9, 389–416.Google Scholar
  26. Mason, P. K., Frost, M. T., Reid, S. J. B., 1969: Computer programs for calculating correlations in quantitative X-ray microanalysis. Nat. Phys. Lab. (U.K.) IMS. Rep. 2.Google Scholar
  27. Mattias, P. P., 1965: Lave dell'Apparato Vulsino. Per. Mineralogia34, 137–199.Google Scholar
  28. Rønsbo, J. B., Pedersen, A. K., Engell, J., 1977: Titan-aegirine from early Tertiary ash layers in northern Denmark. Lithos10, 193–204.Google Scholar
  29. Sheraton, J. W., Cundari, A., 1980: Leucitites from Gaussberg, Antarctica. Contr. Min. Petrol.71, 417–427.Google Scholar
  30. Streckeisen, A. L., 1967: Classification and nomenclature of igneous rocks. N. Jb. Min. Abh.107, 144–214.Google Scholar
  31. Thompson, R. N., 1972: Oscillatory and sector zoning in augite from a Vesuvian lava. Carnegie Inst. Wash., Yearb.71, 463–470.Google Scholar
  32. —, 1974: Some high-pressure pyroxenes. Min. Mag.39, 768–787.Google Scholar
  33. —, 1977: Primary basalts and magma genesis: III Alban Hills, Roman Comagmatic Province, Central Italy. Contr. Min. Petrol.60, 91–108.Google Scholar
  34. Wade, A., Prider, R. T., 1940: The leucite-bearing rocks of the West Kimberley area, Western Australia. J. Geol. Soc. Lond.96, 39–98.Google Scholar
  35. Washington, H. S., 1906: The Roman Comagmatic Region. Publ. Carnegie Inst. Wash. 57.Google Scholar
  36. Whitford, D. J., Nicholls, I. A., Taylor, S. R., 1979: Spatial variations and geochemistry of Quaternary lavas across the Sunda arc in Java and Bali. Contr. Min. Petrol.70, 341–356.Google Scholar
  37. Wimmenauer, W., 1966: The eruptive rocks and carbonatites of the Kaiserstuhl, Germany. In: Carbonatites (Gittens, J., Tuttle, O. F., eds.), pp. 183–204. New York: Interscience.Google Scholar
  38. Yagi, K., Onuma, K., 1967: The join CaMgSi2O6−CaTiAl2O6 and its bearing on the titanaugites. J. Hokkaido Univ. Fac. Sci.13, 463–483.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • A. Cundari
    • 1
    • 2
  • A. K. Ferguson
    • 1
    • 2
  1. 1.Department of GeologyUniversity of MelbourneParkvilleAustralia
  2. 2.Broken Hill Proprietary Company LimitedMelbourneAustralia

Personalised recommendations