Advertisement

Journal of Materials Science

, Volume 22, Issue 7, pp 2645–2654 | Cite as

The thermal reactions of muscovite studied by high-resolution solid-state 29-Si and 27-AI NMR

  • K. J. D. Mackenzie
  • I. W. M. Brown
  • C. M. Cardile
  • R. H. Meinhold
Papers

Abstract

Studies of two muscovites of different iron contents, using solid-state NMR with magic-angle-spinning (MAS) combined with X-ray powder diffraction, thermal analysis and57Fe Mössbauer spectroscopy, suggest that dehydroxylation occurs by a homogeneous rather than an inhomogeneous mechanism, forming a dehydroxylate in which the aluminium is predominantly 5-coordinate. On further decomposition at about 1100° C, the tetrahedral layer and interlayer K+ form a feldspar-like phase similar to leucite (KAISi2O6), the remainder forming a spinel, which, contrary to previous suggestions, appears to contain little silicon. Further heating induces the formation of mullite (AI6Si2OP13), and, in the higher-iron sample, corundum (α-Al2O3), in addition to the feldspar-like phase. The presence of the iron impurity enhances the recrystallization reactions and promotes the conversion of mullite to corundum, which eventually becomes the sole aluminous product in the high-iron sample. In samples fired to higher temperatures, only the tetrahedral aluminium resonance is detectable by27AI NMR, probably because most of the iron is located in either the mullite or corundum phases, in which it broadens the octahedral aluminium resonance beyond detection.

Keywords

Recrystallization Thermal Analysis Iron Content Corundum Thermal Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. H. Brett, K. J. D. Mackenzie andJ. H. Sharp,Quart. Revs. Chem. Soc. 24 (1970) 185.Google Scholar
  2. 2.
    J. P. Eberhart,Bull. Soc. Franc. Mineral. Crist. 86 (1963) 213.Google Scholar
  3. 3.
    S. Udagawa, K. Urabe andH. Hasu,Ganseki Kobutsu Kosho Gakkaishi 69 (1974) 381.Google Scholar
  4. 4.
    A. W. Nicol, “Clays and Clay Minerals”, in Proceedings of the 12th National Conference on Clays and Clay Minerals, Atlanta, 1963, edited by W. F. Bradley (Pergamon, Oxford, 1964) p. 11.Google Scholar
  5. 5.
    N. Sundius andA. M. Bystrom,Trans. Brit. Ceram. Soc. 52 (1953) 632.Google Scholar
  6. 6.
    G. W. Brindley, in “Progress in Ceramic Science, Vol. 3”, edited by J. E. Burke (Pergamon, Oxford, 1963) p. 1.Google Scholar
  7. 7.
    K. J. D. Mackenzie, I. W. M. Brown, R. H. Meinhold andM. E. Bowden,J. Amer. Ceram. Soc. 68 (1985) 266.Google Scholar
  8. 8.
    I. W. M. Brown, K. J. D. Mackenzie andR. H. Meinhold,J. Mater. Sci. Google Scholar
  9. 9.
    R. C. Mackenzie (ed) in “The Differential Thermal Investigation of Clays” (Mineralogical Society Monograph, London, 1957) Ch. 6.Google Scholar
  10. 10.
    W. E. Cameron,Bull. Am. Ceram. Soc. 56 (1977) 1003.Google Scholar
  11. 11.
    A. Muan andC. L. Gee,J. Amer. Ceram. Soc. 39 (1956) 207.Google Scholar
  12. 12.
    I. W. M. Brown, K. J. D. Mackenzie, M. E. Bowden andR. H. Meinhold,ibid. 68 (1985) 298.Google Scholar
  13. 13.
    J. Sanz andJ. M. Serratosa,J. Amer. Chem. Soc.,106 (1984) 4790.Google Scholar
  14. 14.
    E. Lippmaa, M. Magi, A. Samosan, G. Engelhardt andA. R. Grimmer,ibid. 102 (1980) 4889.Google Scholar
  15. 15.
    R. A. Kinsey, R. J. Kirkpatrick, J. Hower, K. A. Smith andE. Oldfield,Amer. Mineral. 70 (1985) 537.Google Scholar
  16. 16.
    C. P. Herrero, J. Sanz andJ. M. Serratosa,J. Phys. C. Solid State Phys. 18 (1985) 13.Google Scholar
  17. 17.
    R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson andE. Oldfield,Amer. Mineral. 70 (1985) 106.Google Scholar
  18. 18.
    B. L. Sherriff andJ. S. Hartman,Can. Mineral. 23 (1985) 205.Google Scholar
  19. 19.
    E. W. Radoslovich,Acta Crystallogr. 13 (1960) 919.Google Scholar
  20. 20.
    N. Güven,Z. Krist. 134 (1971) 196.Google Scholar
  21. 21.
    S. M. Richardson andJ. W. Richardson,Amer. Mineral. 67 (1982) 69.Google Scholar
  22. 22.
    S. Motherwell, “PLUTO”, A Programme for Plotting Molecular and Crystal Structures” (University Chemical Library, Cambridge, England, 1976).Google Scholar
  23. 23.
    J. Sanz andJ. M. Serratosa,Clay Mineral. 19 (1984) 113.Google Scholar
  24. 24.
    P. J. Malden andR. E. Meads,Nature 215 (1967) 844.Google Scholar
  25. 25.
    L. H. Brwen, S. B. Weed andJ. G. Stevens,Amer. Mineral. 54 (1969) 72.Google Scholar
  26. 26.
    C. S. Hogg andR. E. Meads,Mineralog. Mag. 37 (1970) 606.Google Scholar
  27. 27.
    B. A. Goodman,Mineralog. Mag. 40 (1976) 513.Google Scholar
  28. 28.
    H. Annersten andU. Halenius,Amer. Mineral. 61 (1976) 1045.Google Scholar
  29. 29.
    T. Ericsson, R. Wappling andK. Punakivi,Geol. Foeren. Stockholm Foerh.,99 (1977) 229.Google Scholar
  30. 30.
    J. Finch, A. R. Gainsford andW. C. Tennant,Amer. Mineral. 67 (1982) 59.Google Scholar
  31. 31.
    C. M. Cardile, I. W. M. Brown andK. J. D. Mackenzie, submitted toJ. Mater. Sci. Lett. 22 (1987) 357.Google Scholar
  32. 32.
    I. W. M. Brown, K. J. D. Mackenzie andC. M. Cardile,J. Mater. Sci. Lett. 22 (1987) 535.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • K. J. D. Mackenzie
    • 1
  • I. W. M. Brown
    • 1
  • C. M. Cardile
    • 1
  • R. H. Meinhold
    • 1
  1. 1.Chemistry Division, D.S.I.R., Private BagPetoneNew Zealand

Personalised recommendations