Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A problem of Ulam type

  • 34 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    S. Ulam, A Collection of Mathematical Problems, Wiley-Interscience, New York (1960), p. 79.

  2. 2.

    M. A. Rvachev, "On the Ulam problem on the superposition of segments," in: Proc. Sem. Combinatorial Geometry and Optimal Spacing [in Russian], Kiev (1973), pp. 42–52.

  3. 3.

    A. Ya. Dubovitskii, "Solution of the problem of S. Ulam on the optimal superposition of segments," Izv. Akad. Nauk SSSR, Ser. Mat.,40, 672–684 (1976).

  4. 4.

    L. S. Pontryagin, Continuous Groups [in Russian], Nauka, Moscow (1973).

  5. 5.

    V. I. Arnold, Ergodic Problems of Classical Mechanics, W. A. Benjamin (1968).

  6. 6.

    A. D. Ioffe and V. M. Tikhomir, Theory of Extremal Problems [in Russian], Nauka, Moscow (1973).

  7. 7.

    M. A. Rvachev, "Noether's theorem for problems with nonsmooth integrands and its applications to the minimization of the displacement integral," Kibernetika,6, 116–120 (1974).

  8. 8.

    A. D. Ioffe and V. L. Levin, "Subdifferentials of convex functions," Tr. Mosk. Mat. Obshchestva,26, 3–73 (1972).

  9. 9.

    H. Whitney, Geometric Integration Theory, Princeton Univ. Press (1957).

  10. 10.

    M. A. Rvachev, "On the minimization of the displacement integral," Author's Abstract of Doctoral Dissertation, Moscow State Univ. (1974).

Download references

Additional information

Institute of Geological Physics and Mechanics, Academy of Sciences of the Kirghiz SSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 11, No. 2, pp. 58–66, April–June, 1977.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rvachev, M.A. A problem of Ulam type. Funct Anal Its Appl 11, 128–135 (1977). https://doi.org/10.1007/BF01081891

Download citation


  • Functional Analysis
  • Ulam Type