Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the growth of maars and diatremes and its relevance to the formation of tuff rings

  • 528 Accesses

  • 295 Citations

Abstract

Small and large maars exist associated with small and large diatremes, respectively, their subsurface feeder structures. The problem of size and growth of maar-diatreme volcanoes is discussed from a phreatomagmatic point of view from field data, some geophysical data, and short-lived historic maar eruptions. A hydrostatic pressure barrier of usually about 20–30 bars is assumed to control the maximum depth level of explosive magma/groundwater interactions. Similar to the situation in submarine and subglacial volcanism, initial maar-forming water vapour explosions are therefore assumed to occur at shallow depth and to produce a small maar with a shallow diatreme. Because of limited availability of groundwater and ejection of groundwater in the form of steam, the confining pressure barrier is displaced downward. Consequently, water vapour explosions can take place at consecutively deeper levels with the result that the diatreme penetrates downward and grows in size. Since maars are collapse craters resulting from ejection of wallrocks fragmented by water vapour explosions at the level of the diatreme root zone, downward penetration of a diatreme not only results in increase in size of a diatreme but also in increase in size of the overlying maar. As availability of groundwater in limited amounts controls formation of diatremes and their downward penetration, lack of groundwater enables magma to rise within a diatreme and to form a scoria cone or lava lake within the maar, as is frequently found in volcanic fields such as the Eifel area in Germany. In contrast, availability of large amounts of water in near surface environments such as shallow marine, lake, water-rich coastal plains, or water-rich fluviatile gravel beds prevents formation of maars and deep diatremes but causes formation of tuff rings.

This is a preview of subscription content, log in to check access.

References

  1. Aubele JC, Crumpler LS, Loeber KN, Kudo AM (1978) Maars and tuff rings of New Mexico. New Mexico Geol Soc Spec, 6: 109–114

  2. Büchel G (1984) Die Maare im Vulkanfeld der Westeifel, ihr geophysikalischer Nachweis, ihr Alter und ihre Beziehung zur Tektonik der Erdkruste. Dr rer nat thesis (unpublished), Joh Gutenberg-Universität Mainz

  3. Camus G (1975) La Chaîne des Puys (Massif Central français). Etude structurale et volcanologique. Thèse, Ann l'Univ Clermont-Fd, Sér Géol Minéral, Fasc 27

  4. Camus G, Boivin P, Goer de Hervé A, Gourgaud A, Kieffer G, Mergoil J, Vincent PM (1981) Le Capelinhos (Faial, Açores) vingt ans après son éruption: le modèele eruptiv “surtseyen” et les anneaux de tufs hyaloclastiques. Bull Volcanol 44: 3142

  5. Clement CR (1982) A comparative study of some major kimberlite pipes in the Northern Cape and Orange Free State. Ph D thesis (unpublished), University of Cape Town, Cape Town

  6. Crawford E, Herbert C, Taylor G, Helby R, Morgan R, Ferguson J (1980) Diatremes of the Sydney basin. N S W Geol Surv Bull 26: 294–323

  7. Einarsson T (1963) Askja-Ausbruch 1961 and Askja-Caldera in Island. Naturwiss Rundsch 8: 302–306

  8. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer Berlin Heidelberg New York Tokyo

  9. Fisher RV, Waters AC 1970, Base surge bed forms in maar volcanoes. Am J Sci 268: 157–180

  10. Francis EH (1970) Bedding in Scottish (Fifeshire) tuffpipes and its relevance to maars and calderas. Bull Volcanol 34: 697–712

  11. Fröhlich G (1978) Dampfexplosionen durch Kontakt zwischen Wasser und heiβen Schmelzen. Chem Ing Technik 50: 861–866

  12. Hearn BC Jr (1968) Diatremes with kimberlitic affinities in north-central Montana. Science 159: 622–625

  13. Henk A (1984) Zur Geologie und Geophysik des Meerfelder Maares und seiner Umgebung/Westeifel. Dipl thesis (unpublished), Job Gutenberg-Universität Mainz, Mainz

  14. Hohmann H, Kottowski H, Schins H, Henry RF (1982) Experimental investigations of spontaneous and triggered vapour explosions in the molten salt/water system. Meeting on Thermal Nuclear Reactor Safety, Chicago, August 29–September 2, 1982. Proc Int 2: 962–971

  15. Kennedy GC, Holser WT (1966) Pressure — volume — temperature and phase relations of water and carbon dioxide. Handbook of Physical Constants. Geol Soc Am Mem 97: 372–390

  16. Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska. I. April 1977 eruption sequence, petrology, and tectonic setting. J Volcanol geotherm Res 7: 11–37

  17. Leys CA (1982) Volcanic and sedimentary processes in phreatomagmatic volcanoes. Ph D thesis (unpublished), University of Leeds, Leeds

  18. Lorenz V (1971) Collapse structures in the Permian of the Saar-Nahe area, Southwest Germany. Geol Rundsch 60: 924–948

  19. Lorenz V (1973) On the formation of maars. Bull Volcanol 37: 183–204

  20. Lorenz V (1974) Vesiculated tuffs and associated features. Sedimentology 21: 273–291

  21. Lorenz V (1975) Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Phys Chem Earth 9: 17–27

  22. Lorenz V (1979) Phreatomagmatic origin of the olivine melilitite diatremes of the Swabian Alb, Germany. In: Boyd FR, Myer HO (eds) Kimberlites, diatremes and diamonds: their geology, petrology, and geochemistry. Proc Sec Int Kimberlite Conf. Amer Geophys Union Washington 1: 354–363

  23. Lorenz V (1982a) The 1977 explosive eruptions of the Ukinrek Maars, Alaska. Terra Cognita 2, B9: 206

  24. Lorenz, V (1982b) Zur Vulkanologie der Tuffschlote der Schwäbischen Alb. Jahresber Mitt Oberrheinischen Geol Ver NF 64: 167–200

  25. Lorenz V (1986) Maars and diatremes of phreatomagmatic origin, a review. Trans Geol Soc SAfr 88:

  26. Lorenz V, Büchel G (1980a) Zur Vulkanologie der Maare und Schlackenkegel der Westeifel. Mitt Pollichia 68: 29–100

  27. Lorenz V, Büchel G (1980b) Die Kesseltäler der vulkanischen Westeifel; Nachweis ihrer Maargenese. Mainzer Geowiss Mitt 8: 173–191

  28. Lorenz V, McBirney AR, Williams H (1970) An investigation of volcanic depressions. Part III Maars, tuff-rings, tuff cones, and diatremes. NASA Progr rep Houston, Texas

  29. Moore JG (1967) Base surge in recent volcanic eruption. Bull Volcanol 30: 337–363

  30. Müller JB, Veyl G (1956) The birth of Nilahue, a new maar type volcano at Rininahue, Chile. 20th Int Geol Congr, Mexico City, Rep Sec 1: 375–396

  31. Noll H (1967) Maare und maar-ähnliche Explosionskrater in Island: Ein Vergleich mit dem Maar-Vulkanismus der Eifel. Sonderveröff Geol Inst Universität Köln 11

  32. Ollier CD (1967) Maars, their characteristics, varieties, and definition. Bull Volcanol 31: 45–73

  33. Schmincke HU (1977) Phreatomagmatische Phasen in quartären Vulkanen der Osteifel. Geol Jahrb A39: 3–45

  34. Self S, Kienle J, Huot JP (1980) Ukinrek Maars, Alaska. II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7: 39–65

  35. Sigurdsson H, Sparks RSJ (1978) Rifting episode in North Iceland in 1874–1875 and the eruptions of Askja and Sveinagja. Bull Volcanol 41: 149–167

  36. Villinger E (1982) Hydrogeologische Aspekte zur geothermischen Anomalie im Gebiet Urach-Boll am Nordrand der Schwäbischen Alb (SW-Deutschland). Geol Jahrb C32: 3–41

  37. Wohletz KH, McQueen RG (1984) Experimental studies of hydromagmatic volcanism. In: Geophysics Study Committee: Studies in Geophysics: Explosive volcanism: Inception, evolution, and hazards. National Academy Press, Washington 158–169

  38. Zimanowski B (1986) Fragmentationsprozesse beim explosiven Vulkanismus in der Westeifel. Dr rer nat Thesis (unpublished) Joh Gutenberg-Universität Mainz

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lorenz, V. On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48, 265–274 (1986). https://doi.org/10.1007/BF01081755

Download citation

Keywords

  • Hydrostatic Pressure
  • Depth Level
  • Volcanic Field
  • Scoria Cone
  • Shallow Marine