Applied Physics B

, Volume 62, Issue 6, pp 601–607 | Cite as

Single-pulse collision-insensitive picosecond planar laser-induced fluorescence of OHA2Σ+ (v′ = 2) in atmospheric-pressure flames

  • F. Bormann
  • T. Nielsen
  • M. Burrows
  • P. Andresen
Article

Abstract

Single-pulse two-dimensional picosecond Laser-Induced Fluorescence (LIF) imaging of the OH density in a single quantum state was performed for the first time, using a premixed methane-oxygen flame at atmospheric pressure. A picosecond, excimer-Raman-laser system (268 nm, 470 ps FWHM) was used for excitation of OH. The fluorescence from the laser sheet was imaged onto a fast gated intensified camera with a 400 ps gate width. The short laser pulse minimizes the collisional redistribution of population in the ground state during excitation, while the short camera gate avoids significant quenching of the excited-state fluorescence. The fluorescence signal obtained in this way is a direct measure of the population in a selected quantum state. In contrast to common nanosecond LIF signals no corrections on variations of the collisional environment are necessary. This collision-insensitive approach to two-dimensional LIF yields an OH detection limit of 10 ppm in a cube of 330 µm per side with a single 1 mJ laser pulse. A rate-equation model is used to estimate the effects on the observed signal of fluctuations in pulse energy and duration, laser-camera timing jitter, and spatial variations in the collisional environment.

PACS

82.40 07.60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.C. Eckbreth.In laser Diagnostics for Combustion Temperature and Species, ed. by A.K. Gupta, D.G. Lilley, Energy Eng. Sci. Ser., Vol. 7 (Abacus, Cambridge, MA 1988)Google Scholar
  2. 2.
    K. Kohse-Höinghaus: Prog. Energy Combust. Sci.20, 203 (1994)Google Scholar
  3. 3.
    E.W. Rothe, P. Andresen: Appl. Opt. (1995) (in press)Google Scholar
  4. 4.
    J. Luque, D.R. Crosley: LIFBASE v 0.99 (May 1994), a database for spectrum simulation (private communication)Google Scholar
  5. 5.
    E.W. Rothe, Y.W. Gu, G.P. Reck: Appl. Opt. (1995) (submitted)Google Scholar
  6. 6.
    R. Kienle: (Private communication)Google Scholar
  7. 7.
    R.S. Barlow, R.W. Dibble, R.P. Lucht: Opt. Lett.14, 263 (1989)Google Scholar
  8. 8.
    N.L. Garland, D.R. Crosley: In 21stSymp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh, PA, (1988) p. 1693Google Scholar
  9. 9.
    A. Dreizler, R. Taddy, P. Monkhouse, J. Wolfrum: Appl. Phys. B57, 85 (1993)Google Scholar
  10. 10.
    A. Hirano, F. Ricoul, M. Tsujishita: Jpn. J. Appl. Phys.32, 3300 (1993)Google Scholar
  11. 11.
    M.D. Burrows, F. Bormann, P. Andresen: Appl. Phys. B61, 451 (1995)Google Scholar
  12. 12.
    P.E. Young, J.D. Hares, J.D. Kilkenny, D.W. Phillion, E.M. Campbell: Rev. Sci. Instrum.59, 1457 (1988)Google Scholar
  13. 13.
    T. Nielsen, F. Bormann, H. Spiecker, S. Wolbeck, P. Andresen: Rev. Sci. Instrum. (1995) (submitted)Google Scholar
  14. 14.
    F. Bormann, T. Nielsen, M. Burrows, P. Andersen: Appl. Opt. (1996) (submitted)Google Scholar
  15. 15.
    S. Gordon, McBride: NASA SP-273 (1971)Google Scholar
  16. 16.
    M. Schäfer, W. Ketterle, J. Wolfrum: Appl. Phys. B52, 341 (1991)Google Scholar
  17. 17.
    A. Brockhinke, P. Andresen, K. Kohse-Höinghaus: Appl. Phys. B61, 533 (1995)Google Scholar
  18. 18.
    P.H. Paul: J. Quant. Spectrosc. Radiat. Transfer51, 512 (1994)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • F. Bormann
    • 1
  • T. Nielsen
    • 1
  • M. Burrows
    • 2
  • P. Andresen
    • 1
  1. 1.Angewandte Laserphysik, Fakultät für PhysikUniversität BielefeldBielefeldGermany
  2. 2.Wright Laboratory/POSFWright-Patterson AFBUSA

Personalised recommendations