Applied Physics B

, Volume 62, Issue 6, pp 575–581 | Cite as

A direct method of particle sizing based on the statistical processing of scattered photons from particles executing Brownian motion

  • H. S. Dhadwal
  • K. Suh
  • D. A. Ross


A direct method of determining the mean diameter of particles executing Brownian motion is presented. The temporal coherence of the scattered field from submicroscopic particles illuminated by laser light is a function of both the integration time and the particle diameter. The temporal degree of coherence of the time-averaged scattered intensity decreases as the integration time increases. Statistical processing of the scattered photons leads to a method of particle sizing (average diameter), which circumvents the need for digital autocor-relation or power spectral estimation.


07.60 42.80 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Brown: Ann. Phys. Chem.14, 294 (1828)Google Scholar
  2. 2.
    A. Einstein: Ann. Phys. (Paris) 7, 549 (1905)Google Scholar
  3. 3.
    J. Perrin:Atoms (Constable, London 1916)Google Scholar
  4. 4.
    N. Wiener: Acta Math.55, 117 (1930)Google Scholar
  5. 5.
    N. Wax (ed.):Selected Papers on Noise and Stochastic Processes, (Dover, New York 1954)Google Scholar
  6. 6.
    A. Van der Ziel:Noise in Solid State Devices and Circuits (Wiley, New York 1986)Google Scholar
  7. 7.
    B. Chu (ed.):Selected Papers on Quasielastic Light Scattering by Macromolecular. Supramolecular and Fluid Systems, SPIE Milestone Ser., Vol. MS12 (SPIE Optical Engineering Press, Washington, DC 1990)Google Scholar
  8. 8.
    B.J. Berne, R. Pecora:Dynamic Light Scattering. With Applications to Chemistry, Biology and Physics (Wiley, New York 1976)Google Scholar
  9. 9.
    E.W. Barrett, O. Ben-Dov: J. Appl. Meteorol.6, 500 (1967)Google Scholar
  10. 10.
    B. Chu:Laser Light Scattering: Basic Principles and Practice (Academic, New York 1991)Google Scholar
  11. 11.
    E.O. Schulz-DeBois (ed.):Photon Correlation Techniques in Fluid Mechanics, Springer Ser. Opt. Sci., Vol. 38 (Springer, Berlin, Heidelberg 1983)Google Scholar
  12. 12.
    R. Pecora:Dynamic Light Scattering - Applications of Photon Correlation Spectroscopy (Plenum, New York 1985)Google Scholar
  13. 13.
    H.Z. Cummins, E.R. Pike:Photon Correlation and Light Beating Spectroscopy (Plenum, New York 1974)Google Scholar
  14. 14.
    C. Bohren, D. Huffman:Absorption and Scattering of Light by Small Particles (Wiley, New York 1983)Google Scholar
  15. 15.
    S.S. Alpert, Y. Yeh, E. Lipworth: Phys. Rev. Lett.14, 486 (1965)Google Scholar
  16. 16.
    R. Pecora: J. Chem. Phys.49, 1032 (1968)Google Scholar
  17. 17.
    J.C. Brown, P.N. Pusey, J.W. Goodwin, R.H. Ottewill: J. Phys. A8, 664 (1975)Google Scholar
  18. 18.
    T. Tanaka, L.O. Hocker, G.B. Benedek: J. Chem. Phys.59, 5151 (1973)Google Scholar
  19. 19.
    K. Schatzel: App. Phys. B42, 193 (1987)Google Scholar
  20. 20.
    D.E. Koppel: J. Chem. Phys.57, 4814 (1972)Google Scholar
  21. 21.
    J. McWhirter, E.R. Pike: J. Phys. A11, 1729 (1978)Google Scholar
  22. 22.
    A.K. Livesey, P. Licinio, M. Delaye: J. Chem. Phys.84, 5102 (1986)Google Scholar
  23. 23.
    C.L. Lawson, R.J. Hansen:Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs 1974)Google Scholar
  24. 24.
    H.S. Dhadwal, D.A. Ross: InProc. Second World Congress on Particle Technology, Kyoto, Japan (1990)Google Scholar
  25. 25.
    D.A. Ross, H.S. Dhadwal, K. Suh:Inverse Optics III, SPIE Proc.2241, 162 (1994)Google Scholar
  26. 26.
    E.M. Purcell: Nature178, 1449 (1956)Google Scholar
  27. 27.
    R. Hanbury Brown, R.Q. Twiss: Proc. R. Soc. London A243, 291 (1957)Google Scholar
  28. 28.
    L. Mandel: Proc. Phys. Soc.74, 233 (1959)Google Scholar
  29. 29.
    R.J. Glauber: Phys. Rev. Lett.10, 84 (1963)Google Scholar
  30. 30.
    G. Beddard: Phys. Rev.151, 1038 (1966)Google Scholar
  31. 31.
    G. Beddard, J.C. Chang, L. Mandel: Phys. Rev.160, 1496 (1967)Google Scholar
  32. 32.
    F.T. Arecchi: Phys. Rev. Lett.15, 912 (1965)Google Scholar
  33. 33.
    F.A. Johnson, R. Jones, T.P. McLean, E.R. Pike: Phys. Rev. Lett.16, 589 (1966)Google Scholar
  34. 34.
    S.O. Rice: Bell Syst. Tech. J.23, 282 (1944)Google Scholar
  35. 35.
    S.O. Rice: Bell Syst. Tech. J.24, 46 (1945)Google Scholar
  36. 36.
    D. Slepian: Bell Syst. Tech. J.37, 163 (1958)Google Scholar
  37. 37.
    E. Jakeman, E.R. Pike: J. Phys. A1, 128 (1968)Google Scholar
  38. 38.
    E. Jakeman, C.J. Oliver, E.R. Pike: J. Phys. A1, 406 (1968)Google Scholar
  39. 39.
    H.C. Kelly, J.G. Blake: J. Phys. A4, L103 (1971)Google Scholar
  40. 40.
    T. Aoki, Y. Okabe, K. Sakurai: Phys. Rev. A10, 259 (1974)Google Scholar
  41. 41.
    K.I. Suh: Investigations of Brownian processes in photon correlation spectroscopy - A direct method of particle sizing. Ph.D. Thesis, State University of New York at Stony Brook (1994)Google Scholar
  42. 42.
    H.S. Dhadwal, B. Chu: Rev. Sci. Instrum.60, 845 (1990)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • H. S. Dhadwal
    • 1
  • K. Suh
    • 1
  • D. A. Ross
    • 2
  1. 1.Department of Electrical EngineeringState University of New YorkStony BrookUSA
  2. 2.Department of Electrical EngineeringUniversity of Colorado at DenverDenverUSA

Personalised recommendations