Applied Physics B

, Volume 61, Issue 5, pp 529–532 | Cite as

Collinear and non-collinear sum-frequency mixing inβ-BBO for a tunable 195–198 nm all-solid-state laser system

  • J. Lublinski
  • M. Müller
  • F. Laeri
  • K. Vogler
Rapid Communication

Abstract

We attained tunable UV laser radiation between 195 and 198 nm by sum-frequency mixing two synchronized flashlamp-pumped solid-state Q-switch lasers, a Nd:YAG laser frequency quadrupled to 266 nm and a tunable (730–770 nm) alexandrite laser. UV pulse energies of 0.12 mJ with repetition rates of 10 Hz were attained in collinear, as well as non-collinear sum-frequency interaction in aβ-Barium Borate (BBO) crystal with a conversion efficiency of 2.5%. Theoretical models for the non-collinear phase-matching interaction were investigated at UV wavelengths below 200 nm.

PACS

42.50.Ne 42.55.Rz 42.60.Jf 42.60.Mi 42.65.Ky 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ringling, O. Kittelmann, F. Noack: Opt. Lett.17, 1794 (1992)Google Scholar
  2. 2.
    K. Kato: Appl. Phys. Lett.30, 583 (1977)Google Scholar
  3. 3.
    Y. Tanaka, H. Kuroda, S. Shionoya: Opt. Commun.41, 434 (1982)Google Scholar
  4. 4.
    H. Hemmati, J. C. Bergquist, W. M. Itano: Opt. Lett.8, 73 (1983)Google Scholar
  5. 5.
    A. Borsutzky, R. Brünger, R. Wallenstein: Appl. Phys. B52, 380 (1991)Google Scholar
  6. 6.
    W. L. Glab, J. P. Hessler: Appl. Opt.26, 3181 (1987)Google Scholar
  7. 7.
    W. Mückenheim, P. Lokai, B. Burghardt, D. Basting: Appl. Phys. B45, 259 (1988)Google Scholar
  8. 8.
    M. Wanatabe, K. Hayasaka, H. Imajo, S. Urabe: Opt. Lett.17, 46 (1992)Google Scholar
  9. 9.
    T. Meguro, T. Caughey, L. Wolf, Y. Aoyagi: Opt. Lett.19, 102 (1994)Google Scholar
  10. 10.
    J. A. Giordmaine: Phys. Rev. Lett.8, 19 (1962)Google Scholar
  11. 11.
    S. Umegaki, S. Tanaka: Jpn. J. Appl. Phys.16, 775 (1977)Google Scholar
  12. 12.
    S. X. Dou, D. Josse, J. Zyss: J. Opt. Soc. Am. B9, 687 (1992)Google Scholar
  13. 13.
    S. X. Dou, D. Josse, R. Hierle, J. Zyss: J. Opt. Soc. Am. B8, 1732 (1991)Google Scholar
  14. 14.
    S. X. Dou, D. Josse, J. Zyss: J. Opt. Soc. Am. B9, 1312 (1992)Google Scholar
  15. 15.
    T. Hofmann, K, Mossavi, F. K. Tittel: Opt. Lett.17, 1691 (1992)Google Scholar
  16. 16.
    R. Danielius, A. Piskarsas, A. Stabinis, G. P. Banfi, P. Di Trapani, R. Righini: J. Opt. Soc. Am. B10, 2222 (1993)Google Scholar
  17. 17.
    L. A. W. Gloster, I. T. McKinnie, T. A. King: Opt. Commun.112, 328 (1994) L. A. W. Gloster, Z. X. Jiang, T. A. King: IEEE J. QE-30, 2961 (1994)Google Scholar
  18. 18.
    G. C. Bhar, U. Chaterjee: Jpn. J. Appl. Phys.29, 1103 (1990)Google Scholar
  19. 19.
    G. C. Bhar, U. Chaterjee, S. Das: Jpn. J. Appl. Phys.29, L1126 (1990)Google Scholar
  20. 20.
    G. C. Bhar, U. Chaterjee, S. Das: Opt. Commun.80, 381 (1991)Google Scholar
  21. 21.
    D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin: J. Appl. Phys.62, 1968 (1987)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. Lublinski
    • 1
  • M. Müller
    • 1
  • F. Laeri
    • 1
  • K. Vogler
    • 2
  1. 1.TH-Darmstadt, Institute of Applied PhysicsDarmstadtGermany
  2. 2.Aesculap-MeditecHeroldsbergGermany

Personalised recommendations