Applied Physics B

, Volume 61, Issue 5, pp 429–437

Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning

Part I: Experiments
  • B. Braun
  • K. J. Weingarten
  • F. X. Kärtner
  • U. Keller


We systematically investigate the difference between both actively and passively mode-locked lasers with Gain-at-the-End (GE) and Gain-in-the-Middle (GM) at the example of Nd:YLF lasers. The GE laser generates pulse widths approximately three times shorter than a comparable GM cavity. This is due to enhanced Spatial Hole Burning (SHB) which effectively flattens the saturated gain and allows for a larger lasing bandwidth compared to a GM cavity. We first investigate enhanced SHB by measuring the cw mode spectrum, where we have observed that the mode spacing in GE cavities depends primarily on the crystal length. This was also confirmed for a Nd:LSB crystal, where the pump absorption length was significantly shorter than the crystal length. In mode-locked operation, pulse widths of 4 ps for passive mode locking and 5 ps for active mode locking are demonstrated with GE cavities, compared to 11 ps for passive and 17 ps for active mode locking with GM cavities. Additionally, the time-bandwidth product for the GE cavity is approximately twice the ideal product for a sech2 pulse shape and cannot be improved by dispersion compensation alone, while the GM cavity has nearly ideal time-bandwidth-limited performance. The results for the GM cavity compare well to existing theories taking into account the added effect of pump-power-dependent gain bandwidth which increases the bandwidth of Nd: YLF from 360 to > 500 GHz. In a following paper [1] (called Part II) a rigorous theoretical treatment of the effects due to SHB will be presented.


42.60 42.55 42.65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.X. Kärtner, B. Braun, U. Keller: Appl. Phys. B61 (1995) Part II of this paper (in press)Google Scholar
  2. 2.
    D.J. Kuizenga, A.E. Siegman: IEEE J. QE-6, 694 (1970)Google Scholar
  3. 3.
    D.J. Kuizenga, A.E. Siegman: IEEE J. QE-6, 709 (1970)Google Scholar
  4. 4.
    U. Keller, K.J. Weingarten, K.D. Li, D.C. Gerstenberger, P.T. Khuri-Yakub, D.M. Bloom: Opt. Lett.15, 45 (1990)Google Scholar
  5. 5.
    K.J. Weingarten, D.C. Shannon, R.W. Wallace, U. Keller: Opt. Lett.15, 962 (1990)Google Scholar
  6. 6.
    G.T. Maker, A.I. Ferguson: Appl. Phys. Lett.54, 403 (1989)Google Scholar
  7. 7.
    A.A. Godil, A.S. Hou, B.A. Auld, D.M. Bloom: Opt. Lett.16, 1765 (1991)Google Scholar
  8. 8.
    H.A. Haus, Y. Silberberg: IEEE J. QE-22, 325 (1986)Google Scholar
  9. 9.
    M. Sargent: Appl. Phys.9, 127 (1976)Google Scholar
  10. 10.
    C.L. Tang, H. Statz, G. DeMars: J. Appl. Phys.34, 2289 (1963)Google Scholar
  11. 11.
    C.S. Adams, G.T. Maker, A.I. Ferguson: Opt. Commun.76, 127 (1990)Google Scholar
  12. 12.
    P.A. Schulz, S.R. Henion: Opt. Lett.16, 1502 (1991)Google Scholar
  13. 13.
    U. Keller, T.H. Chiu, J.F. Ferguson: CLEO (1993), paper JWA4Google Scholar
  14. 14.
    B. Braun, K.J. Weingarten, U. Keller: CLEO (1994), paper CTHI1Google Scholar
  15. 15.
    C.J. Flood, D.R. Walker, H.M.v. Driel: Opt. Lett.20, 58 (1995)Google Scholar
  16. 16.
    A.E. Siegman:Lasers (Univ. Science Books, Mill Valley, CA 1986)Google Scholar
  17. 17.
    V.R. Mironenko: Sov. J. Quantum Electron.10, 1203 (1980)Google Scholar
  18. 18.
    G.J. Kintz, T. Baer: IEEE J. QE-26, 1457 (1990)Google Scholar
  19. 19.
    J.J. Zayhowski: Opt. Lett.15, 431 (1990)Google Scholar
  20. 20.
    U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom: Opt. Lett.17, 505 (1992)Google Scholar
  21. 21.
    U. Keller: Appl. Phys. B58, 347 (1994)Google Scholar
  22. 22.
    K.J. Weingarten, B. Braun, U. Keller: Opt. Lett.19, 1140 (1994)Google Scholar
  23. 23.
    B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, R. Wallenstein: Appl. Phys. B58, 381 (1994)Google Scholar
  24. 24.
    J.-P. Meyn, T. Jensen, G. Huber: IEEE J. QE-30, 913 (1994)Google Scholar
  25. 25.
    A.E. Siegman, D.J. Kuizenga: Optoelectron6, 43 (1974)Google Scholar
  26. 26.
    H.A. Haus: J. Appl. Phys.46, 3049 (1975)Google Scholar
  27. 27.
    A.A. Kaminskii:Laser Crystals: Their Physics and Properties, 2nd edn. Springer Ser. Opt. Sci., Vol 14 (Springer, Berlin, Heidelberg 1981)Google Scholar
  28. 28.
    H.A. Haus: IEEE J. QE-11, 323 (1975)Google Scholar
  29. 29.
    F.X. Kärtner, D. Kopf, U. Keller: J. Opt. Soc. Am. B12, 486 (1995)Google Scholar
  30. 30.
    W. Koechner:Solid-State Laser Engineering, 4th edn. Springer Ser. Opt. Sci., Vol 1 (Springer, Berlin, Heidelberg 1996)Google Scholar
  31. 31.
    F. Salin, J. Squier, M. Piché: Opt. Lett.16, 1674 (1991)Google Scholar
  32. 32.
    D. Kopf, K.J. Weingarten, L. Brovelli, M. Kamp, U. Keller: Opt. Lett.19, 2143 (1994)Google Scholar
  33. 33.
    L.R. Brovelli, U. Keller, T.H. Chiu: J. Opt. Soc. Am. B12, 311 (1995)Google Scholar
  34. 34.
    E.P. Ippen: Appl. Phys. B58, 159 (1994)Google Scholar
  35. 35.
    U. Keller, T.H. Chiu, J.F. Ferguson: Opt. Lett.18, 217 (1993)Google Scholar
  36. 36.
    K. Tamura, J. Jacobson, E.P. Ippen, H.A. Haus, J.G. Fujimoto: Opt. Lett.18, 220 (1993)Google Scholar
  37. 37.
    F. Krausz, T. Brabec: Opt. Lett.18, 888 (1993)Google Scholar
  38. 38.
    C.J. Flood, G. Giuliani, H.M.v. Driel: Opt. Lett.15, 218 (1990)Google Scholar
  39. 39.
    W. Koechner:Solid-State Laser Engineering, 4th edn. Springer Ser. Opt. Sci., Vol 1 (Springer, Berlin, Heidelberg 1996) p. 171Google Scholar
  40. 40.
    G. Quarles:Lightning Optical, private communication (1994)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • B. Braun
    • 1
  • K. J. Weingarten
    • 1
  • F. X. Kärtner
    • 1
  • U. Keller
    • 1
  1. 1.Swiss Federal Institute of TechnologyInstitute of Quantum ElectronicsZürichSwitzerland

Personalised recommendations