Advertisement

Applied Physics B

, Volume 61, Issue 5, pp 421–427 | Cite as

Polarization-spectroscopic measurement and spectral simulation of OH (A2ΣX2Π) and NH (A3ΠX3Σ) transitions in atmospheric pressure flames

  • A. A. Suvernev
  • A. Dreizler
  • T. Dreier
  • J. Wolfrum
Article

Abstract

Polarization spectroscopy has been used to investigate the electronic bands of OH (A2Σ-X2Π) and NH (A3Π-X3Σ) radicals generated in atmospheric pressure flames. The pump-beam intensity dependence of the polarization-spectroscopy signals of isolated lines in theR branches has been studied. It was found that significant saturation is noticeable for pump-beam intensities as low as 0.1 MW/cm2. A detailed theoretical description inluding laser-bandwidth convolutions has been developed to model unsaturated polarization spectra of OH and NH. For OH, temperature evaluations have been performed in methane/air flames from fits to experimentalR1 band head spectral structures. The results are critically dependent on the degree of saturation in experimental spectra, instrumental bandwidth and the assumed coupling cases in the calculation of line-strength parameters. It is shown that saturation leads to an error of more than 60% in the temperature evaluation when a pump-beam intensity of 1 MW/cm2 is used.

PACS

33.00 42.65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wieman, T.W. Hänsch: Phys. Rev. Lett.36, 1170 (1976)Google Scholar
  2. 2.
    K. Danzmann, K. Grützmacher, B. Wende: Phys. Rev. Lett.57, 2151 (1986)Google Scholar
  3. 3.
    N.W. Carlson, A.J. Taylor, A.L. Schawlow: Phys. Rev. Lett.37, 683 (1976)Google Scholar
  4. 4.
    R.E. Teets, F.W. Kowalski, W.T. Hill, N. Charlson, T.W. Hänsch: Proc. Soc. Phot. Opt. Instr. Eng.113, 80 (1977)Google Scholar
  5. 5.
    M. Sargent III: Phys. Rev. A14, 524 (1976)Google Scholar
  6. 6.
    W. Demtröder:Laser Spectroscopy, Springer Ser. Chem. Phys., Vol. 5 (Springer, Heidelberg, Berlin, 1988)Google Scholar
  7. 7.
    G. Kychakoff, R.D. Howe, R.K. Hanson: Appl. Opt.23, 1303 (1984)Google Scholar
  8. 8.
    W.G. Tong, E.S. Yeung: Anal. Chem.57, 70 (1985)Google Scholar
  9. 9.
    G. Zizak, J. Lanauze, J.D. Winefordner: Appl. Opt.25, 3242 (1986)Google Scholar
  10. 10.
    K. Nyholm, R. Maier, C.G. Aminoff, M. Kaivola: Appl. Opt.32, 919 (1993)Google Scholar
  11. 11.
    K. Nyholm, R. Fritzon, M. Aldén: Opt. Lett.18, 1672 (1993)Google Scholar
  12. 12.
    K. Nyholm, R. Fritzon, M. Aldén: Appl. Phys. B59, 37 (1994)Google Scholar
  13. 13.
    K. Nyholm: Opt. Commun.111, 66 (1994)Google Scholar
  14. 14.
    A.A. Suvernev, N.L. Suverneva: Phys. Rev. A51 (1995) (in press)Google Scholar
  15. 15.
    E.J. Friedman-Hill, L.A. Rahn, R.L. Farrow: J. Chem. Phys.100, 4065 (1994)Google Scholar
  16. 16.
    R.E. Teets: Opt. Lett.9, 226 (1984)Google Scholar
  17. 17.
    H. Bervas, S. Le Boiteux, L. Labrunie, B. Attal-Trétout: Mol. Phys.79, 911 (1993)Google Scholar
  18. 18.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii:Quantum Theory of Angular Momentum, (World Scientific, Singapore 1988) p. 271Google Scholar
  19. 19.
    J.A. Coxon: Cdn. J. Phys.58, 933 (1980)Google Scholar
  20. 20.
    T. Dreier, D. Rakestraw: Appl. Phys. B50, 479 (1990)Google Scholar
  21. 21.
    R.P. Lucht, R.L. Farrow, D.J. Rakestraw: J. Opt. Soc. Am. B10, 1508 (1993)Google Scholar
  22. 22.
    A. Dreizler, R. Tadday, A.A. Suvernev, M. Himmelhaus, T. Dreier, P. Foggi: Chem. Phys. Lett. (1995) (in press)Google Scholar
  23. 23.
    C.R. Brazier, R.S. Ram, P.F. Bernath: J. Mol. Spectrosc.120, 381 (1986)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. A. Suvernev
    • 1
  • A. Dreizler
    • 1
  • T. Dreier
    • 1
  • J. Wolfrum
    • 1
  1. 1.Physikalisch Chemisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations