Applied Physics B

, Volume 61, Issue 5, pp 409–414 | Cite as

Laser-induced fluorescence thermometry and concentration measurements on NOA–X (0-0) transitions in the exhaust gas of high pressure CH4/air flames

  • A. O. Vyrodov
  • J. Heinze
  • M. Dillmann
  • U. E. Meier
  • W. Stricker


Laser-Induced Fluorescence (LIF) excitation spectra in the NOA–X (0-0) band were used for temperature measurements in the postflame region of high-pressure CH4/air flames. To improve the quality of the measured spectra and to perform reliable line-shape measurements, the initial mixture was doped with approximately 400 ppm NO. At pressures up to 18 bar, excellent agreement was obtained between NO LIF temperatures and NARS/rotational Raman temperatures. Effective broadening coefficients were also determined in these flames. Problems with quantitative concentration measurements of NO and single-pulse temperature measurements at high pressures are discussed.


33.00 35.00 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Reisel, C.D. Carter, N.M. Laurendeau: Combust. Flame92, 485 (1993)Google Scholar
  2. 2.
    J.R. Reisel, N.M. Laurendeau: Combust. Sci. Tech.98, 137 (1994)Google Scholar
  3. 3.
    J.R. Reisel, C.D. Carter, N.M. Laurendeau, M.C. Drake: Combust. Sci. Tech.91, 271 (1993)Google Scholar
  4. 4.
    S.M. Correa, M.D. Smooke: In23rd Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh, PA 1990) p. 289Google Scholar
  5. 5.
    M.C. Drake, R.J. Blint: Combust. Sci. Tech.75, 261 (1991)Google Scholar
  6. 6.
    K. Kohse-Höinghaus: Prog. Energy Combust. Sci.20, 203 (1994)Google Scholar
  7. 7.
    A.Y. Chang, M.D. DiRosa, R.K. Hanson: J. Quant. Spectrosc. Radiat. Transfer47, 375 (1992)Google Scholar
  8. 8.
    A.O. Vyrodov, J. Heinze, U.E. Meier: J. Quant. Spectrosc. Radiat. Transfer53, 277 (1995)Google Scholar
  9. 9.
    M.D. DiRosa, R.K. Hanson: J. Quant. Spectrosc. Radial. Transfer52, 515 (1994)Google Scholar
  10. 10.
    M.C. Drake, J.W. Ratcliffe: J. Chem. Phys.98, 3850 (1992)Google Scholar
  11. 11.
    P.H. Paul, J.A. Gray, J.L. Durant, J.W. Thoman, Jr.: Appl. Phys. B57, 249 (1993)Google Scholar
  12. 12.
    H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz: InProc. Joint Meeting German/Italian Sections of the Combustion Institute, Ravello, Italy (1989) p. 33Google Scholar
  13. 13.
    M. Woyde, W. Stricker: Appl.Phys. B50, 519 (1990)Google Scholar
  14. 14.
    S. Prucker, W. Meier, W. Stricker: Rev. Sci. Instrum.65, 2908 (1994)Google Scholar
  15. 15.
    R.N. Zare, A.L. Schmeltekopf, W.J. Harrop, D.L. Albritton: J. Mol. Spectrosc.46, 37 (1973)Google Scholar
  16. 16.
    C. Amiot, R. Bacis, G. Guelashvili: Cdn. J. Phys.56, 251 (1978)Google Scholar
  17. 17.
    C. Amiot, J. Verges: Phys. Scr.26, 422 (1982)Google Scholar
  18. 18.
    A. Timmermann, R. Wallenstein: Opt. Commun.39, 239 (1981)Google Scholar
  19. 19.
    I.J. Wysong, J.B. Jeffries, D.R. Crosley: Opt. Lett.14, 767 (1989)Google Scholar
  20. 20.
    E. Lindholm: Ark. Mat. Astron. Fys.32A, 17 (1945)Google Scholar
  21. 21.
    J. Humlicek: J. Quant. Spectrosc. Radiat. Transfer21, 309 (1979)Google Scholar
  22. 22.
    S. Gordon, B.J. McBride: NASA Rep. SP-273 (1971)Google Scholar
  23. 23.
    M.P. Lee, B.K. McMillin, R.K. Hanson: Appl. Opt32, 5379 (1993)Google Scholar
  24. 24.
    B.K. McMillin, J.L. Palmer, R.K. Hanson: Appl. Opt.32, 7532 (1993)Google Scholar
  25. 25.
    J. Olbregts: Int. J. Chem. Kin.17, 835 (1985)Google Scholar
  26. 26.
    J. Warnatz: Ber. Bunsenges. Phys. Chem.82, 834 (1978)Google Scholar
  27. 27.
    H.H. Grotheer, S. Kelm, H.S.T. Driver, R.J. Hutcheon, R.D. Lockett, G.N. Robertson: Ber. Bunsenges. Phys. Chem.96, 1360 (1992)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. O. Vyrodov
    • 1
  • J. Heinze
    • 1
  • M. Dillmann
    • 1
  • U. E. Meier
    • 1
  • W. Stricker
    • 1
  1. 1.Institute of Physical Chemistry of CombustionDLRStuttgartGermany

Personalised recommendations