Applied Physics B

, Volume 62, Issue 1, pp 29–37

Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy

  • L. Martinsson
  • P. -E. Bengtsson
  • M. Aldén
Regular Papers


The accuracy and precision of oxygen concentration and temperature measured by dual-broadband rotational Coherent Anti-Stokes Raman Spectroscopy (CARS) were investigated in nitrogen-oxygen mixtures at atmospheric pressure and temperatures between 290 and 1410 K. The relative standard deviation of temperatures evaluated from pure oxygen rotational CARS spectra was found to be around 5%, and the mean temperature was the same as for nitrogen CARS spectra, except for temperatures above 1000 K, where the temperature was 120 K below the correct value. The in situ calibrated oxygen concentrations were within 10% of the correct value, with a standard deviation of around 1.2% for the mixtures of 12 and 20% oxygen in nitrogen. For the lowest oxygen concentrations considered in this study (2 and 4%), the systematic errors in the evaluated concentrations were very large, and the standard deviation of repeated single-shot measurements was above 2%. However, employing weighting in the spectral fitting routine reduced the errors in the concentration and the single-shot standard deviation was lowered to 0.5%. Finally, it was shown that spectral interference (from oxygen) in a rotational CARS spectrum of nitrogen generally had little impact on the temperature evaluated from fitting the spectra to theoretical nitrogen spectra.


33.10 42.65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.C. Eckbreth:Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA 1987)Google Scholar
  2. 2.
    D.A. Greenhalgh: InAdvances in Non-Linear Spectroscopy, ed. by R.J.H. Clark, R.E. Hester (Wiley, New York 1988) p. 193Google Scholar
  3. 3.
    W. Stricker, W. Meier: InTrends in Applied Spectroscopy (Research Trends, Trivandrum, India 1993)Google Scholar
  4. 4.
    C. Löfström, S. Kröll, M. Aldén: InProc. 24th Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh 1992) p. 1637Google Scholar
  5. 5.
    M. Lefebvre, M. Péalat, J. Strempel: Opt. Lett.9, 1806 (1992)Google Scholar
  6. 6.
    D. Brüggemann: Il Nuovo Cimento D14, 1075 (1992)Google Scholar
  7. 7.
    M.A. Yuratich: Mol. Phys.38, 625 (1979)Google Scholar
  8. 8.
    A.C. Eckbreth, T.J. Anderson: Appl. Opt.24, 2731 (1985)Google Scholar
  9. 9.
    A.C. Eckbreth, T.J. Anderson: Opt. Lett.11, 496 (1986)Google Scholar
  10. 10.
    M. Aldén, P.-E. Bengtsson, H. Edner: Appl. Opt.25, 4493 (1986)Google Scholar
  11. 11.
    P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll: Combust. Sci. Technol.81, 129 (1992)Google Scholar
  12. 12.
    L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll: Temp.6, 679 (1992)Google Scholar
  13. 13.
    L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy: J. Chem. Phys.99, 2466 (1993)Google Scholar
  14. 14.
    S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson: Appl. Phys. B51, 25 (1990)Google Scholar
  15. 15.
    M. Woyde, W. Stricker: Appl. Phys. B50, 519 (1990)Google Scholar
  16. 16.
    M. Péalat, M. Lefebvre, J.-P. Taran, P.L. Kelley: Phys. Rev. A38, 1948 (1988)Google Scholar
  17. 17.
    R. Lucht: Opt. Lett.12, 78 (1987)Google Scholar
  18. 18.
    R.R. Antcliff, O. Jorett, Jr.: Rev. Sci. Instrum.58, 2075 (1987)Google Scholar
  19. 19.
    I.R. Beattie, T.R. Gilson, D.A. Greenhalgh: Nature276, 378 (1978)Google Scholar
  20. 20.
    C.M. Roland, W.A. Steele: J. Chem. Phys.73, 5919 (1980)Google Scholar
  21. 21.
    L.P. Goss, J.W. Fleming, A.B. Harvey: Opt. Lett.5, 345 (1980)Google Scholar
  22. 22.
    J.A. Shirley, R.J. Hall, J.F. Verdieck, A.C. Eckbreth: AIAA-Paper No. 80-1542 (1980)Google Scholar
  23. 23.
    J.B. Zheng, A. Leipertz, J.B. Snow, R.K. Chang: Opt. Lett.8, 350 (1983)Google Scholar
  24. 24.
    D.V. Murphy, R.K. Chang: Opt. Lett.6, 233 (1981)Google Scholar
  25. 25.
    J.W. Fleming, A.B. Harvey, W.T. Barnes: Temp.5, 589 (1982)Google Scholar
  26. 26.
    J.B. Zheng, J.B. Snow, D.V. Murphy, A. Leipertz, R.K. Chang, R.L. Farrow: Opt. Lett.9, 341 (1984)Google Scholar
  27. 27.
    B. Dick, A. Gierulski: Appl. Phys. B40, 1 (1986)Google Scholar
  28. 28.
    A. Leipertz, T. Seeger, H. Spiegel, E. Magens: Temp.6, 661 (1992)Google Scholar
  29. 29.
    A. Leipertz, E. Magens, T. Seeger, H. Spiegel: InAerothermodynamics in Combustors, ed. by R.S.L. Lee, J.H. Whitelaw, T.S. Wung (Springer, Berlin, Heidelberg 1992)Google Scholar
  30. 30.
    Th. Lasser, E. Magens, A. Leipertz: Opt. Lett.10, 535 (1985)Google Scholar
  31. 31.
    A. Leipertz, E. Magens: AIAA-Paper 85-1569 (1985)Google Scholar
  32. 32.
    J.D. Black, C.A. Long: Appl. Opt.31, 4291 (1992)Google Scholar
  33. 33.
    P.-E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, G. Lundholm: InProc. 25th Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh, PA 1994) p. 1735Google Scholar
  34. 34.
    S. Kröll, M. Aldén, P.-E. Bengtsson, C. Löfström: Appl. Phys. B49, 445 (1989)Google Scholar
  35. 35.
    C. Asawaroengchai, G.M. Rosenblatt: J. Chem. Phys.72, 2664 (1980)Google Scholar
  36. 36.
    T.C. James, W. Klemperer: J. Chem. Phys.31, 130 (1959)Google Scholar
  37. 37.
    M.C. Drake, C. Asawaroengchai, G.M. Rosenblatt: Am. Chem. Soc. Symp. Ser.134, 231 (1980)Google Scholar
  38. 38.
    M.C. Drake: Opt. Lett.7, 440 (1982)Google Scholar
  39. 39.
    F.Y. Yueh, E.J. Beiting: Comput. Phys. Commun.42, 65 (1986)Google Scholar
  40. 40.
    J.C. Luthe, E.J. Beiting, F.Y. Yueh: Comput. Phys. Commun.42, 73 (1986)Google Scholar
  41. 41.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling:Numerical Recipes (FORTRAN Version). (Cambridge Univ. Press, Cambridge 1989)Google Scholar
  42. 42.
    D.W. Marquardt: J. Soc. Ind. Appl. Math.11, 431 (1963)Google Scholar
  43. 43.
    K.W. Brown, N.H. Rich, J.W. Nibler: J. Mol. Spectrosc.151, 482 (1992)Google Scholar
  44. 44.
    G. Rouillé, G. Millot, R. Saint-Loup, H. Berger: J. Mol. Spectrosc.154, 372 (1992)Google Scholar
  45. 45.
    T. Dreier, B. Lange, J. Wolfrum, M. Zahn: Appl. Phys. B45, 183 (1988)Google Scholar
  46. 46.
    T. Dreier, G. Schiff: Appl. Phys. B55, 388 (1992)Google Scholar
  47. 47.
    M. Bérard, P. Lallemand, J.P. Cebe, M. Giraud: J. Chem. Phys.78, 672 (1983)Google Scholar
  48. 48.
    K. Altmann, G. Strey, J.G. Hochenbleicher, J. Brandmüller: Z. Naturforsch.27a, 56 (1972)Google Scholar
  49. 49.
    G.J. Rosasco, W.S. Hurst: Phys. Rev. A32, 281 (1985)Google Scholar
  50. 50.
    K.P. Huber, G. Herzberg:Constants of Diatomic Molecules (Van Nostrand-Reinhold, New York 1979)Google Scholar
  51. 51.
    R.R. Laher, F.R. Gilmore: J. Phys. Chem. Ref. Data20, 685 (1991)Google Scholar
  52. 52.
    A.E. De Pristo, S.D. Augustin, R. Ramaswamy, H. Rabitz: J. Chem. Phys.71, 850 (1979)Google Scholar
  53. 53.
    G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy: J. Chem. Phys.96, 961 (1992)Google Scholar
  54. 54.
    D. Robert, J. Bonamy: J. Phys. (Paris)40, 923 (1979)Google Scholar
  55. 55.
    J. Bonamy: Université de Franche-Comte, France, private communicationGoogle Scholar
  56. 56.
    J.P. Looney, G.J. Rosasco: J. Chem. Phys.95, 2379 (1991)Google Scholar
  57. 57.
    M. Aldén, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson: Appl. Opt.28, 3206 (1989);29, 4434 E (1990)Google Scholar
  58. 58.
    S. Kröll, D. Sandell: J. Opt. Soc. Am. B5, 1910 (1988)Google Scholar
  59. 59.
    B. Attal-Trétout, P. Bouchardy, P. Magre, M. Péalat, J.-P. Taran: Appl. Phys. B51, 17 (1990)Google Scholar
  60. 60.
    M. Péalat, P. Magre, P. Bouchardy, G. Collin: Appl. Opt.30, 1263 (1991)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. Martinsson
    • 1
  • P. -E. Bengtsson
    • 1
  • M. Aldén
    • 1
  1. 1.Department of Combustion PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations