Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pade approximants (review)

  • 91 Accesses

  • 3 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    G. A. Baker, Jr. and J. L. Gammel, “The Pade approximants,” J. Math. Anal. Appl.,2, No. 1, 21 (1961).

  2. 2.

    G. A. Baker, Jr., “The theory and application of the Pade approximant method,” in: Advances in Theoretical Physics, K. A. Brueckner (ed.), Vol. 1, N.Y. (1965), p. 1.

  3. 3.

    J. L. Basdevant, “The Pade approximation and its physical applications,” Fortschr. Phys.,20, No. 5, 283 (1972).

  4. 4.

    J. Zinn-Justin, “Strong interaction dynamics with Pade approximants,” Phys. Rep.,1C, No. 3, 57 (1971).

  5. 5.

    G. A. Baker, Jr. and J. L. Gammel (eds.), The Pade Approximants in Theoretical Physics, Academic, New York-London (1970).

  6. 6.

    P. R. Graves-Morris (ed.), Pade Approximants and Their Applications, Academic, N. Y. (1973).

  7. 7.

    G. A. Baker, Jr., Essentials of Pade Approximants, Academic, N.Y. (1975).

  8. 8.

    “Pade approximant method and its applications to mechanics,” in: Lecture Notes in Physics, H. Cabannes (ed.), Vol. 47, Springer (1976).

  9. 9.

    C. B. Brezinski, “A bibliography on Pade approximation and some related matters,” ibid. [8] in: Lecture Notes in Physics, H. Cabannes (ed.), Vol. 47, Springer (1976), p. 245.

  10. 10.

    R. H. Kraichnan, “Turbulent diffusion: evaluation of primitive and renormalized perturbation series by Pade approximants and by expansion of Stieltjes transforms into contributions from continuous orthogonal functions,” ibid. [5], p. 129.

  11. 11.

    J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, 4th ed., American Mathematical Society (1966).

  12. 12.

    M. Barnsley, “The bounding properties of multipoint Pade approximant to a series of Stieltjes on the real line,” J. Math. Phys.,14, No. 3, 299 (1973).

  13. 13.

    S. T. Epstein and M. F. Barnsley, “A variational approach to the theory of multipoint Pade approximants,” J. Math. Phys.,14, No. 3, 314 (1973).

  14. 14.

    L. Wuytack “Applications of Pade approximant in numerical analysis,” in: Approximation Theory, R. Schaback and K. Scherer (eds.), Springer (1976), p. 453.

  15. 15.

    W. G. Gragg, “The Pade table and its relation to certain algorithms of numerical analysis,” SIAM Rev.,14, No. 1, 1 (1972).

  16. 16.

    J. Nutall, “Convergence of Pade approximants for the Bethe-Salpeter amplitude,” Phys. Rev.,157, 1312 (1967).

  17. 17.

    J. L. Gammel, “Review of two recent generalizations of Pade approximants,” ibid. [6], p. 3.

  18. 18.

    C. Alabiso and P. Butera, “N-variable rational approximants and method of moments,” J. Math. Phys.,16, No. 4, 840 (1975).

  19. 19.

    J. S. R. Chisholm and R. Hughes-Jones, “Relative scale covariance of N-variable approximants,” Proc. R. Soc. London, Ser. A,344, 465 (1975).

  20. 20.

    J. S. R. Chisholm, “Multivariate approximants with branch points. I. Diagonal approximants,” Proc. R. Soc. London, Ser. A,358, No. 1694, 351 (1977).

  21. 21.

    V. L. Danilov et al., Mathematical Analysis [in Russian], GFML, Moscow (1961).

  22. 22.

    A. Ya. Khinchin, Continued Fractions [in Russian], Nauka, Moscow (1978).

  23. 23.

    C. Swain, “Continued fraction solution to systems of linear equation,” J. Phys.,A9, No. 11, 1811 (1976).

  24. 24.

    C. R. Garibotti and J. A. Mignaco “Approximate solution of bound state problems through continued fractions,” Z. Phys.,A274, No. 1, 33 (1975).

  25. 25.

    J. A. Mignaco and J. E. Miraglia, “On the approximate solution through continued fractions of the Schrödinger equation with central potentials for positive energies,” Z. Phys.,A280, No. 1, 1 (1977).

  26. 26.

    A. F. Nikiforov and V. B. Uvarov, Principles of the Theory of Special Functions, [in Russian], Nauka, Moscow (1974).

  27. 27.

    J. Nutall, “Variational principles and Pade approximants,” ibid. [6] p.29.

  28. 28.

    J. Nutall, “The connection of Pade approximants with stationary variational principles and convergence of certain Pade approximants,” ibid. [5], p. 219.

  29. 29.

    E. J. Brändas and D. A. Micka, “Variational methods in the wave operator formalism: applications in variation perturbation theory and the theory of energy bounds,” J. Math. Phys.,13, No. 2, 155 (1972).

  30. 30.

    D. Bessis, L. Epele, and M. Villani, “Summation of regularized perturbative expansions for singular interaction,” J. Math. Phys.,15, No. 12, 2071 (1974).

  31. 31.

    D. Bessis and M. Villani, “Perturbative-variational approximations to the spectral properties of semibounded Hilbert space operators based on the moment problem with finite or diverging moments,” J. Math. Phys.,16, No. 3, 462 (1975).

  32. 32.

    D. Bessis, P. Monssa, and M. Villani, “Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics,” J. Math. Phys.,16, No. 11, 2318 (1975).

  33. 33.

    D. Bessis, “Construction of variational bounds for the N-body eigenstate problem by method of Pade approximants,” ibid. [8] in: Lecture Notes in Physics, H. Cabannes (ed.), Vol. 47, Springer (1976), p. 17.

  34. 34.

    J. S. R. Chisholm, “Solution of linear integral equations using Pade approximants,” J. Math. Phys.,4, No. 12, 1506 (1963).

  35. 35.

    R. C. Brunet, “An approximant for democratic representation of all Born terms,” J. Math. Phys.,17, No. 5, 677 (1976).

  36. 36.

    G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, “An investigation of the applicability of the Pade approximant method,” J. Math. Anal. Appl.,2, 405 (1961).

  37. 37.

    G. A. Baker, Jr. and P. R. Graves-Morris, “Convergence of rows of the Pade table,” J. Math. Anal. Appl.,57, No. 2, 323 (1977).

  38. 38.

    G. A. Baker, Jr., “Convergence of Pade approximants using the solution of linear functional equations,” J. Math. Phys.,16, No. 4, 813 (1975).

  39. 39.

    S. Tani, “Pade approximants in potential scattering,” Phys. Rev.,139B, No. 4, 1011 (1965).

  40. 40.

    N. I. Akhiezer, The Classical Problem of Moments [in Russian], Fizmatgiz, Moscow (1961).

  41. 41.

    Yu. V. Vorob'ev, The Method of Moments in Applied Mathematics [in Russian], Fizmatgiz, Moscow (1958).

  42. 42.

    D. Masson, “Hilbert space and Pade approximants,” ibid [5], p. 197.

  43. 43.

    M. F. Barnsley and P. D. Robinson, “Bivariational bounds,” Proc. R. Soc. London, Ser. A,338, No. 1615, 527 (1974).

  44. 44.

    M. F. Barnsley, “Correction terms for Pade approximants,” J. Math. Phys.,16, No. 4, 918 (1975).

  45. 45.

    M. F. Barnsley and G. A. Baker, Jr., “Bivariational bounds in a complex Hilbert space and correction terms for Pade approximants,” J. Math. Phys.,17, No. 6, 1019 (1976).

  46. 46.

    M. F. Barnsley, “Pointwise bounds for eigenfunction of one-electron systems” Phys. Lett. A,53, No. 2, 124 (1975).

  47. 47.

    M. F. Barnsley and P. D. Robinson, “Bivariational bounds of two-point boundary-value problems,” J. Math. Anal. Appl.,56, No. 1, 172 (1976).

  48. 48.

    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere [in Russian], Nauka, Moscow (1967).

  49. 49.

    U. Frisch, “Wave propagation in random media,” in: Probabilistic Methods in Applied Mathematics, A. T. Bharucha-Reid (ed.), Academic, New York-London (1968), p. 76.

  50. 50.

    L. A. Apresyan, “Methods of statistical perturbation theory (review),” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,17, No. 2, 165 (1974).

  51. 51.

    D. Bessis, “Pade approximants in quantum field theory,” ibid. [6] p. 275.

  52. 52.

    O. G. Nalbandyan and V. I. Tatarskii, “Comparison of diagram and analytical methods for the approximate solution of linear stochastic equations,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,20, No. 4, 549 (1977).

  53. 53.

    O. V. Muzychuk, “The construction of an accurate solution of Dyson's equation for Green's mean function,” Teor. Mat. Fiz.,28, No. 3, 371 (1976).

  54. 54.

    Yu. E. Kuzovlev and G. N. Bochkov, “Operator methods of analyzing stochastic non-Gaussian processes and systems,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,20, No. 10, 1505 (1977).

  55. 55.

    U. Frisch and R. Bourret, “Parastochastics,” J. Math. Phys.,11, No. 2, 364 (1970).

  56. 56.

    R. C. Bourret, “Quantized fields as random classical fields,” Phys. Lett.,12, No. 4, 323 (1964).

  57. 57.

    R. C. Bourret, “Examples of stochastic systems equivalent to second quantized systems,” Can. J. Phys.,44, No. 10, 2519 (1966).

  58. 58.

    L. A. Apresyan, “Equations for the mean values of linear stochastic operators which depend on Markov random processes,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,20, No. 11, 1161 (1978).

  59. 59.

    G. Fogli, M. F. Pellicoro, and M. Villani, “An approach to radiation correction in QED in the frame-work of the Pade method,” Nuovo Cimento,A11, No. 11, 153 (1972).

  60. 60.

    G. Fogli, M. F. Pellicoro, and M. Villani, “A summation method for a class of series with divergent terms,” Nuovo Cimento,A6, No. 1, 79 (1971).

  61. 61.

    D. L. Hunter and G. A. Baker, Jr., “Methods of series analysis,” Phys. Rev.,B7, No. 7, 3346 (1973).

  62. 62.

    M. E. Fischer and W. J. Camp, “Estimation of spectra from moments — application to Hubbard's model,” Phys. Rev.,B5, No. 9, 3730 (1972).

  63. 63.

    M. E. Fisher, “The theory of equilibrium critical phenomena,” Rep. Prog. Phys.,30, Pt. II, 615 (1967).

  64. 64.

    M. E. Fisher, “Critical phenomena — the role of series expansion,”, ibid. [8] in: Lecture Notes in Physics, H. Cabannes (ed.), Vol. 47, Springer (1976), p. 181.

  65. 65.

    G. A. Baker, Jr., “Convergent bounding approximation procedures with application to the ferromagnetic Ising model,” Phys. Rev.,161, No. 2, 434 (1967).

  66. 66.

    G. A. Baker, Jr., “Converging bounds for the free energy in certain statistical mechanical problems,” J. Math. Phys.,13, No. 12, 1862 (1972).

  67. 67.

    J. L. Basdevant, D. Bessis, and J. Zinn-Justin, “Pade approximants in strong interactions, two-body pion and caon systems,” Nuovo Cimento,60A, No. 2, 185 (1969).

  68. 68.

    M. Pusterla, “Model field theories and Pade approximants,” ibid. [6], p. 299.

  69. 69.

    G. Turchetti, “Pade approximants in nucleon dynamics” ibid. [6] 313.

  70. 70.

    J. L. Gammel and M. T. Menzel, “Bethe-Salpeter equation for nucleon-nucleon scattering matrix Pade approximants,” Phys. Rev.,D11, No. 4, 963 (1975).

  71. 71.

    A. Gerstein et al., “Matrix Pade approximants and the Bethe-Salpeter equation of N-N-interaction,” Phys. Rev.,D13, No. 4, 1140 (1976).

  72. 72.

    J. L. Gammel and F. A. McDonald, “Application of Pade approximants to scattering theory,” Phys. Rev.,142, No. 4, 1245 (1966).

  73. 73.

    C. R. Garibotti, “Pade approximants in potential scattering,” ibid. [6] p. 253.

  74. 74.

    C. R. Garibotti and M. Villani, “Pade approximants and the Jost-function,” Nuovo Cimento,61A, No. 4, 747 (1969).

  75. 75.

    R. W. Haymaker and L. Schlessinger “Pade approximants as a computational tool for solving the Schrödinger and Bethe-Salpeter equations,” ibid. [5], p. 257.

  76. 76.

    J. A. Tjen and H. M. Nieland, “Solutions of the Bethe-Salpeter equations by means of Pade approximants,” ibid. [5], p. 289.

  77. 77.

    G. Turchetti, “Variational principles and matrix approximants in potential theory,” Lett. Nuovo Cimento,15, No. 5, 129 (1976).

  78. 78.

    L. P. Benofy, J. L. Gammel, and P. Meri, “Off-shell momentum as a variational parameter in calculations of matrix Pade approximants in potential scattering,” Phys. Rev.,D13, No. 11, 3111 (1976).

  79. 79.

    D. Bessis, P. Meri, and G. Turchetti, “Variational bounds from matrix Pade approximants in potential scattering,” Phys. Rev.,D15, No. 8, 2345 (1977).

  80. 80.

    A. K. Common and T. Stacy, “Legendre — Pade approximants and their application in potential scattering,” J. Phys.,A11, No. 2, 259 (1978).

  81. 81.

    A. K. Common and T. Stacey, “The convergence of Legendre — Pade approximants to the Coulomb and other scattering amplitudes,” J. Phys.,A11, No. 2, 275 (1978).

  82. 82.

    C. R. Garibotti and F. F. Grinstein, “Summation of partial wave expansion in the scattering by longrange potentials,” J. Math. Phys.,19, No. 11, 821 (1978).

  83. 83.

    M. Scardon, S. Weinberg, and J. Wright, “Functional analysis and scattering theory,” Phys. Rev.,135B, No. 1, 202 (1964).

  84. 84.

    J. J. Loeffel et al., “Pade approximants and the anharmonic oscillator,” Phys. Lett.,B30, No. 9, 956 (1969).

  85. 85.

    S. Graffi, V. Grecci, and B. Simon, “Borel summability: application to anharmonic oscillator,” Phys. Lett.,B32, No. 7, 631 (1970).

  86. 86.

    A. T. Amos, “Pade approximants and Rayleigh—Schrödinger perturbation theory,” J. Phys.,B11, No. 12, 2053 (1978).

  87. 87.

    S. Wilson, D. M. Silver, and R. A. Farrel, “Special invariance properties of the [N+1/N] Pade approximants in Rayleigh—Schrödinger perturbation theory,” Proc. R. Soc. London, Ser. A,356, No. 1686, 363 (1977).

  88. 88.

    G. L. Bendazzoli, G. Goshinski, and G. Orland, “Pade approximants and inner projection in the Brillouin—Wigner perturbation scheme for He-like ions,” Phys. Rev.,A2, No. 1, 2 (1970).

  89. 89.

    E. Brändas and O. Goshinskii, “Variational-perturbation expansions and Pade approximants to the energy,” Phys. Rev.,A1, No. 3, 552 (1970).

  90. 90.

    A. Bove et al., “Functional integration, Pade approximants and the Schrödinger equation,” J. Math. Phys.,16, No. 2, 268 (1975).

  91. 91.

    B. Nelson “Feynman integrals and the Schrödinger equation,” J. Math. Phys.,5, No. 3, 332 (1964).

  92. 92.

    J. Killingbeck “Quantum-mechanical perturbation theory,” Rep. Prog. Phys.,40, No. 9, 963 (1977).

  93. 93.

    P. W. Langhoff and M. Karplus, “Application of Pade approximants to dispersion force and optical polarizability computations,” ibid. [5], p. 41.

  94. 94.

    M. Barnsley, “Bounds of dynamical polarizabilities at high frequencies,” Mol. Phys.,29, No. 5, 1377 (1975).

  95. 95.

    P. Ortoleva, “Dynamic Pade approximants in the theory of periodic and chaotic chemical center waves,” J. Chem. Phys.,69, No. 1, 300 (1978).

  96. 96.

    M. J. Sobhy, “Applications of Pade approximants in electrical network problems,” ibid. [6], p. 321.

Download references

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 22, No. 6, pp. 653–674, June, 1979.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Apresyan, L.A. Pade approximants (review). Radiophys Quantum Electron 22, 449–466 (1979). https://doi.org/10.1007/BF01081220

Download citation

Keywords

  • Pade Approximants